FPGAs based Intend Methodologies and Architectures for Digital Signal Processing

1M Pushpalatha
Associate Professor, Dept. of ECE
Siddhartha Institute of Engineering and Technology
Ibrahimpatnam, Hyderabad, Telangana, India

2N. Sivakumar
Assistant Professor, Dept. of ECE
Siddhartha Institute of Engineering and Technology
Ibrahimpatnam, Hyderabad, Telangana, India

Abstract: There has been an incredible growth for the past few years within the field of embedded systems, particularly within the shopper physical science phase. The increasing trend towards high performance and low power systems has forced researchers to come back up with innovative style methodologies and architectures that may succeed these objectives and meet the demanding system necessities. Several of those systems perform some reasonably streaming processing that needs the in depth arithmetic Calculations. FPGAs are being progressively used for a range of computationally intensive applications, particularly within the realm of digital signal process (DSP). Because of fast increases in fabrication technology, the present generation of FPGAs contains an oversized number of configurable logic blocks (CLBs) and a other options like on chip memory, DSP blocks, clock synthesizers, etc. to support implementing a large range of arithmetic applications. The high non-recurring engineering (NRE) prices and long development time for application specific integrated circuits (ASICs) build FPGAs engaging for application specific DSP solutions. Although the present generation of FPGAs offers sort of resources like logic blocks, embedded recollections or DSP blocks, there's still limitation on the number of those resources being offered on every device. On the opposite hand, a mixed DSP/FPGA style flow introduces many challenges to the designers because of the integration of the planning tools and quality of the algorithms. Therefore, any attempt to alter the planning flow and optimize the processes for either space or performance is appreciated.

Keywords: FPGA, DSP, CLB, ASIC, NRE, FIR, MIMO

1. INTRODUCTION

There has been an incredible growth for the past few years within the field of embedded systems, particularly within the shopper physical science phase. The increasing trend towards high performance and low power systems has forced researchers to come back up with innovative style techniques that may succeed these objectives and meet the stringent system necessities. Several of those systems perform some reasonably streaming digital signal process that needs intensive computation of mathematical operations. The vary of those operations varies from easy functions such as basic arithmetic operations to a lot of complicated functions such matrix operation and filtering. As digital signal process (DSP) is integrated into a lot of devices, time to plug and the ability to form late style changes becomes necessary. Computer code will provide the flexibility in style, permitting late style changes however its performance is poor compared to hardware. Computer code executes in a very serial manner wherever hardware can execute in a very really parallel approach. On the opposite hand, making associate degree application specific microcircuit (ASIC) takes the longer time to form and once done its not changeable. This can be wherever a field programmable gate array (FPGA) becomes a great resolution by combining the strengths of hardware and computer code. Traditionally, digital signal processors are employed in several DSP applications mainly because of the shorter development time, lower power consumption, and lower cost. But in applications wherever such cases don't seem to be demanding necessities of the system, FPGAs are being progressively used. In general, such cases embody a range of computationally intensive applications, particularly within the realm of digital signal processing (DSP) [1-7]. Because of fast advancements in fabrication technology, the current generation of FPGAs contains an oversized variety of configurable logic blocks (CLBs), and is turning into a lot of possible platform for implementing a large vary of applications. The high non-recurring engineering (NRE) prices and long development Time for application specific integrated circuits (ASICs) build FPGAs engaging for application specific DSP solutions. DSP is turning into agoods perform today. A lot of and a lot of common devices require some reasonably signal process with a high output of information. The latest handheld video devices or audio devices or photographic camera all need some sort of DSP algorithms. Engineers should realize ways that to induce a lot of performance and shorter time to the market as quick as doable. Embedded DSP microprocessors perform their arithmetic operations via computer code. This can be a consecutive operation in nature, and thus slow approach, however has the advantage of being modifiable. The concept of golf stroke the
arithmetic operations in hardware have been around for an extended time. However, making custom ASIC needs plenty of your time and energy up front. This can be wherever FPGA chips can step in and solve the matter. Associate degree FPGA combines the most effective of each world. The reconfigurable hardware like FPGAs offers high performance and may consequently be considerably quicker than the microprocessors.

2. FIELD PROGRAMMABLE GATE ARRAY TECHNOLOGY

Field programmable gate arrays (FPGAs) are configurable integrated circuits that may be wont to style digital circuits. The FPGA configuration is often specified exploitation hardware description languages like VHDL or Verilog. The reconfigurability feature further as non-recurring engineering (NRE) price of the FPGAs offers significant blessings in several applications. This can be not like application specific integrated circuits (ASICs) wherever styleers don't have the flexibleness of design modifications when the chip is factory-made. FPGAs contain a matrix of configurable logic blocks (CLBs) that give the reprogrammable logic and a hierarchy of reconfigurable interconnects to wire the CLBs along. Additionally to those basic elements, on-chip blocks of memory are also provided. The recent trend in FPGA technology is to require coarse-grained architectural elements with DSP blocks, embedded processors, and high speed transceivers to create a whole system on a programmable chip (SOPC).

Taking advantage of hardware correspondence, FPGAs exceed the computing power of digital signal processors by breaking the paradigm of serial execution and achieving higher output. FPGA technology offers flexibility and fast prototyping capabilities in favor of faster time to plug. A style conception may be tested and verified in hardware without probing the long fabrication method of custom ASIC style. You can then implement progressive changes associate degree repeat on an FPGA style among hours instead of weeks. The growing availability of high level computer code tools decreases the learning curve and sometimes includes valuable material possession (IP) cores for advanced management and signal process.

Figure 1 depicts a typical FPGA design with the essential building blocks. As it can be seen from the figure, the block recollections are chunks of RAMs out there on chip and don't exclude area from the logic blocks. it's necessary to grasp that look up tables (LUTs) within the logic blocks that are chiefly wont to build combinational logic, may be designed as RAMs or shift registers. This can be a really economical approach of creating shift registers while not exploitation the storage parts.

3. DSP DESIGN FLOW/TOOLS ON FPGAS

Developing a strategy for the hardware implementation of complicated DSP applications on a reconfigurable logic might be a difficult task because of the integration of many style tools required within the method. One amongst the foremost difficult processes in system style is distinguishing a beginning point! Methodologies facilitate U.S.A. handle complicated styles with efficiency, minimize style time, eliminate several sources of errors, minimize the personnel required to finish the planning, and usually turn out optimal resolution styles, the advantages of following such a strategy fully outweigh its development prices.

Designing DSP algorithms on FPGAs may be a quite difficult task. The natural path of DSP algorithms is to use computer code primarily based languages like C and implement the algorithms on DSP processors. FPGAs use hardware description language (HDL) to do constant task. The conversion of a computer code primarily based algorithmic program to hardware is associate degree automated method most of the time. However, the DSP algorithms might be designed in lipoprotein from the start with special experience. Figure shows the DSP style flow on FPGAs exploitation many tools offered by Xilinx. A MATLAB [9] algorithmic program can be regenerate to register transfer level (RTL) exploitation AccelDSP style tools or it can be combined with Simulink blocks. Xilinx provides a DSP library to implement complex DSP algorithms like filters that may be employed in any style. Also, Xilinx coregen tool may be wont to produce complicated DSP functions in RTL. Coregen may be a parameterized tool that may generate complicated
functions. A Simulink style may be converted to RTL mechanically exploitation System generator tool. In any case, an RTL based style may be created that may be placed and routed exploitation Xilinx ISE tool set. This can produce the bitstream required to piece the FPGA.

Figure 2: FPGA/DSP style flow

4. DSP FILTER DESIGN METHODOLOGIES AND ARCHITECTURES ON FPGAS

FPGAs are being progressively used for a range of computationally intensive applications, particularly within the realm of digital signal process (DSP) [1-7]. Due to rapid advancements in fabrication technology, the present generation of FPGAs contains an oversized variety of configurable logic blocks (CLBs). This makes FPGAs a more possible platform for implementing a large varies of arithmetic applications. The high non-recurring engineering (NRE) prices and long development time for application specific integrated circuits (ASICs) build FPGAs engaging for application specific DSP solutions. Finite impulse response (FIR) filters ar prevailing in signal process applications. These filters are major determinants of the performance and of the device power consumption. Thus it's necessary to possess good tools to optimize FIR filters. Moreover, the techniques mentioned during this chapter can be incorporated in building alternative complicated DSP functions, e.g., linear systems like FFT, DFT, DHT, etc. Most of the DSP style techniques that are presently in use, are targeted towards hardware synthesis and don't specifically think about the options of the FPGA design [18, 19]. The previous analysis primarily concentrates on minimizing number block adder price. During this chapter, we have a tendency to graft a method for implementing high speed FIR filters exploitation solely registered adders and hardwired shifts. A changed CSE algorithmic program is extensively wont to cut back FPGA hardware. CSE may be a compiler optimization that searches for instances of identical expressions (i.e. all of them judge to constant value), and analyses whether or not it's worthwhile substitution them with one variable holding the computed price. The cost perform outlined in our changed algorithmic program expressly considers the FPGA architecture. This price performs assigns constant weight to each registers and adders in order to balance the usage of such elements once targeting FPGA design. Common sub expression elimination is associate degree optimization technique that searches for instances of an even expression in associate degree equation and analyses whether or not it’s worthwhile substitution them with one variable holding the computed price. This Technique is wide employed in optimizing compilers. What is more, the value perform is modified to contemplate the mutual contraction metric [2] in an effort to optimize the physical layout of the FIR filter. It’s shown that introducing this metric to the value function affects the FPGA space.

5. DSP APPLICATIONS IN MIMO SYSTEMS

Multiple inputs multiple outputs (MIMO) refer to the communications systems that use multiple antennas at each transmitter and receiver to boost the standard and performance of the communication systems. MIMO technology has recently attracted researchers’ attention in wireless communication since it will increase the system throughput while not extra information measure or transmitter power, this can be achieved through exploitation higher spectral potency [6] by causing a lot of information per second per unit of information measure. MIMO technology takes advantage of a radio emission development called multipath reflection wherever transmitted data bounces off walls, ceilings, and alternative objects, reaching the receiving antenna multiple times via completely different angles and with slightly completely different delays.

An Overview of Multiple Input Multiple Output (MIMO) Systems

Figure 3 depicts a typical MIMO system, wherever the computer file stream goes through a preprocessing stage, and therefore the stream or a part of its sent to the transmit antenna elements. The signals travel through the wireless channel, that is painted by the MIMO channel with completely different channel gains between all doable pairs of transmit/receive antennas. The streams received at the receiver antenna parts are processed once more to recover the initial input stream. If antenna parts are sufficiently separated, radio emission propagation
phenomena referred to as multi-path attenuation ensures that the various elements of received signal may be treated as freelance signals. this enables for vital data rate (and spectral efficiency) increase. Depending on the particular signal process techniques enforced, capacity increase may be achieved through either causing multiple coincident streams between the same transmitter/receiver combine, or suppressing interference coming back from close transmitters, or by combination of them. Within the following we'll discuss a 2x1 MIMO system (two transmitters and one receiver). We have a tendency to discuss the system architecture and a number of other building blocks among the system. We have a tendency to optimize the system architecture exploitation the techniques illustrated in Chapter four (See section four.2) for efficiently implementing the correlation performs.

Figure 3: Typical MIMO System

6. DSP APPLICATIONS IN OBJECT DETECTION AND RECOGNITION

The fast evolution of digital image process, beside the market demand for digital cameras, displays, video, etc. in each industrial applications and shopper electronics, brings a big challenge to the designers to develop new technologies and devices. Subtle algorithms are incorporated in new products each in hardware and computer code however there are many limitations: pressure to Reduce the system price, would like for many interfaces, low power consumption, and intrinsic quality of the digital image process algorithms are the foremost important factors. The images that we have a tendency to are wont to seeing from video and still cameras are a reproduced version of the knowledge that we have a tendency to see with our eyes. The human brain is ready to Process plenty of details like color, dynamic vary, intensity, texture and form. However this can be not the case with machine vision systems. These systems are typically used in video cameras, medical devices, security systems, internal control, and consumer electronics, transportable devices, etc. and don't seem to be as clever because the human brain at exploitation the information in a very raw image. Therefore, playing some image process tasks and extracting data from incoming pictures may be a necessary step. The subsequent is that the list of most vital processes that will be enclosed in any sort of image process system:

- Filtering: Applying associate degree absolute perform to image blocks or extract associate degree array of data from a picture
- Neighbor processing: This process is often done on multiple pixels to produce one peel. This might need many lines of information to be keep before process will begin. On-chip memory may be wont to build this process doable, operations like convolution are samples of this method and that has several applications in object detection, edge detection, corner detection, etc.

7. CONCLUSION

We propose a completely unique technique to implement FIR filters on reconfigurable hardware based on add and shift methodology. Our methodology may be a multiplier less technique that considers the FPGA design and it improves the FPGA space considerably whereas maintaining performance. FIR filters are basic building blocks for alternative DSP transforms like FFT, DCT, etc. thus the planned design may be incorporated in implementing such applications. We have a tendency to to valid our implementation results on Xilinx Virtex FPGAs and compared our results against competitor ways such as DA, MAC, and SPIRAL. Just in case of comparison with public prosecutor and mack ways we show higher space and comparable performance. As compared with SPIRAL, we show vital performance advantage. We’ve extended our methodology to cut back the FPGA resource utilization by incorporating mutual contraction metric that estimates pre-layout wire length. We have a tendency to to show that incorporating such metric may any cut back routing congestion and total wire length. Furthermore, we have a tendency to to gift many algorithms for information placement for on-chip recollections that rigorously assign the variables into memory entries. These algorithms may be incorporated into next generation of FPGAs further as application specific integrated circuits (ASICs) so as to cut back the outflow power consumption. Outflow power consumption may be a vital considers total power consumption particularly in submicron technology. The planned schemes leverage the live and dead time of the operation intervals to decide if the memory entry ought to
be unbroken in sleep, drowsy, or live mode so as to save outflow power. We have a tendency to show through the experimental analysis that even the simple schemes will give a decent quantity of advantages. We have a tendency to additionally give the optimum algorithm supported min-cost flow that rigorously places information into memory entries. We have shown the number of power saving for every technique. Finally we have a tendency to gift many real world applications that are enforced successfully supported our planned architectures and methodologies. These applications vary from MIMO systems that incorporate the novel implementation of the correlation perform to image process applications like object detection, Face detection, and corner detection that utilize many architectures bestowed during this thesis. These latter design includes correlation perform in style of corner detection perform and constant multiplication in face detection system.

REFERENCES

[8]. Junguk Cho, Shahnam Mirzaei, Jason Oberg, and Ryan Kastner “FPGA Based Face Detection System Using Haar Classifiers”, International Symposium on Field Programmable Gate Arrays (FPGA), February 2009

[9]. Junguk Cho, Shahnam Mirzaei, Bridget Benson, and Ryan Kastner “Parallelized Architecture of Multiple Classifiers for face Detection”, International Conference on Application Specific Systems, Architectures and Processors (ASAP), July 2009, Boston, USA

[26]. Shahnam Mirzaei, Anup Hosangadi and Ryan Kastner “Layout Aware Optimization of High Speed Fixed Coefficient FIR Filters
Deborah Goshorn, Shahnam Mirzaei, Junguk Cho, and Ryan Kastner “Field Programmable Gate Array Implementation of Parts-based Object Detection for Real Time Video Applications”, International Conference on Field Programmable Logic and Applications (FPL), August 2010, Milano, Italy

About the authors:

1M Pushpalatha she got B.Tech degree from G Narayanamma Institute of Technology and Science (GNITS) in ECE branch from Hyderabad. She got M.Tech degree from Mahaveer Institute of science and Technology with Digital Electronics and communication Systems (DECS) from Hyderabad. She is working as an ASSOCIATE PROFESSOR for SIDDHARTHA INSTITUTE OF ENGINEERING AND TECHNOLOGY in the department of ECE. She is the permanent member of ISTE. She has 10 years of teaching experience in engineering field. She attended many workshops related to Digital Electronics, VLSI and Low power VLSI. She published 10 papers in various international journals’ attended so many conferences. She conducted workshop and National level paper presentation. She has very much interest to do research on Digital Electronics, Wireless communication, communication systems.

2N. Sivakumar received B.Tech degree from SBIT Engg College in ECE branch khammam and M.Tech degree from Narayana Engg College with VLSI System Design hyderabad. He currently working as an Assistant Professor for siddhartha institute of engineering and technology in the department of ECE. He has 4 years of teaching experience and has published 5 Papers in International Journals, 2 Papers in National Journals and has been noted under 2 International Conferences. He has a Life time membership of Indian Society for Technical Education (ISTE). He attended many workshops related to VLSI and Low power VLSI. He attended so many conferences. He is very much interested to do research on VLSI Technology and Design and Floor planning, communication systems and antennas.