Weighing System of Fruit Sorting and Transportation Gyro Car Based On Arm

Tamboli Amir S.1, Bhide Ameya D.2, Varhade Amit M.3, Prof. S. B. Mandlik4
Department of E&TC, P.R.E.C. Loni, Pune University, India

Abstract-- The automatic fruit-transportation gyro car works in the economic forest; the designed Gyrocar sorting, weighing & obstacle avoidance system based on ARM. gyro is specially designed in such way that it moves from one station to another in forest. Gyrocar has three compartments for three colour of fruit & Gyrocar is provided with inbuilt sorting mechanism with an robotic arm with RGB Sensor. Sorting mechanism sort the fruit individually in three different compartments in same gyrocar at each station in forest on the basis of colour of fruit. Our gyrocar moves from one station to another on path follower mechanism. Gyrocar stops at each station within a particular time period; it can also be manually operated, it also provided with overload alert, if weight of fruit in car exceed above an certain limit by buzzer available in a control room. Whole working is divided in two section one as control room and another is working area where car moves. Real time weight of fruit can be seen on LCD available on same gyrocar as well as in control room with the help of RFTx & RFRx. Our gyrocar also provided Ultrasonic sensor which is used to avoid accident by obstacle in its path. When obstacle in its path, alert by buzzer in control room.

Key Points-- Fruit collection & sorting, weight measurement, Obstacle avoidance, overload indication etc.

I. INTRODUCTION

Automatic fruit-transportation gyro car, which working in economic forest area, has become a development trend of novel fruit-transportation vehicle. we can also used this mechanism in manufacturing areas to sort and transform different object to different platform. It has many advantages such as sorting ability, safe and steady movement, overload alert, obstacle avoidance in its path. However, the path of the automatic fruit transportation gyro car is settled in the economic forest, so designing a system for avoiding the accident of obstacles such as the falling branches on the path is essential to make the gyro car’s safe working. The work described in this paper is mainly concerned with the ultrasonic obstacle avoidance system based on Ultrasonic sensor and ARM of the fruit-transportation gyro car, automatic fruit sorting based on ARM+RGB color sensor. Centralized control mechanism & wireless communication based on ARM and RF transmitter & receiver. Weight measurement & appropriate action using load sensor, buzzer, LCD display is implemented. The whole architecture, hardware and software design of the obstacle avoidance system, weight measurement will be discussed in the following system.

II. BLOCK DIAGRAM

Fig. Block diagram at working Area on gyro car

Objectives of the project:
1. Monorail Gyro car inside economic forest.
2. Fruit collection and transportation using gyro car.
3. Fruit sorting mechanism.
4. Weight measurement indication on LCD display also overloads indication.
5. Obstacle Avoidance
6. Centralized control mechanism
Fig. Block Diagram at control room

Block Diagram Description:

The core of fruit-transportation gyro car's weighing system is ARM processor and the modules connected to processor include the load sensor, color sensor the RF module, the power supply module, the buzzer (alarm), and the display module. All modules constitute the fruit transportation gyro car weighing system. Load sensor passes the analog data to ARM for A / D conversion, then the weight of the fruit is displayed on the LCD and sent to monitoring client through RF module. The main function of the whole system is monitoring whether the weight of fruit are overloading or not, and sending the real-time data to the monitoring client in order to record volume and make instructions to the weighing system. Start and stop press button for manual movement of gyro car. For detect obstacle in its path ultrasonic sensor are used. For the movement of gyro car two dc motors are used. Another three dc motor are used for robotic ARM for sorting of fruits with the help of RGB sensor. Limit switch is used to sense the fruit for sorting. Two LCD display one on Gyro car and another one in control room to display weight of fruit inside the Gyro car. IR sensors are used to detect station to stop Gyro Car.

III. **Flow Chart At Working Area On Gyro Car:**

610
IV. FLOW CHART AT CONTROL ROOM

5.3 Forward movement of gyro car

After sorting & corresponding weight measurement the gyro car is move forward in order to drive gyro car. Two DC motors are used which is controlled by ARM processor. In order to sense the station IR sensor is provided which indicates the presence of station. When it senses the presence of station it perform it ARM then processor start the movement of gyro car. It waits at station for 2 minutes or initiated by press start /stop button on car & then moves ahead.

5.4 Obstacle detection

In order to detect any obstacle on its path such as falling of branches of trees is sense by Ultrasonic sensor. If there is any obstacle then ultrasonic sensor performed it to processor which stops the movement of car.

5.5 Communication between gyro car & control unit

The control is provided at main station which has RF transmitter & receiver, LCD display & buzzer the communication between gyro car in working area & control unit is take place through RF Tx/Rx which is better for obstacle avoidance, overload indication.

VI. EXPECTED RESULT

1. Load sensor should properly sense the weight for reliable operation and overload indication.
2. Gyro car should return to main station after overloading.
3. RGB sensor inelegantly sense the colour for effective sorting.
4. Gyro car should return to main station when obstacle detects on the rail.
5. Gyro car should stop at station when signal from IR sensor interrupted.
6. Serial communication between arm and RF module must be reliable.
7. Arm should able to monitored live data.
8. LCD display should able to display live data, buzzer should be on and off according to weight.
8. Movement of car should be smooth with proper speed.

Advantages-
1. Low cost
2. Easy to implement.
3. Easy to Handle.
5. Obstacle Detection.
6. Accident avoidance by detecting obstacle in path
7. Less human interaction.

V. WORKING OF SYSTEM

5.1 Fruit collection & sorting

First of all we take different fruits in trolley, after placing fruits particular limit switch get pressed then RGB sensor for colour detection comes into picture. RGB sensor senses the colour & then with the help of three DC motor (Robotic Arm) & pick and place spoon fruits are sort in three compartments in car. This sorting mechanism is implemented on gyro car.

5.2 Weight measurement & overload indication

After sorting of fruits weight is being measured by load sensor & display it on LCD. Load sensor & LCD display is connected to ARM processor if the weight is beyond carrying capacity the buzzer is get on at main station & instead of forward moving gyro car return to main station.
8. Reduces human Error.
10. Centralized control.

VII. CONCLUSION

New weighing system of fruit- transportation gyro car meets the requirement of dynamic weighing in range 0~5kg. With the advantages of high processing speed, processing capacity, simple component and capacity of achieving more complex functions, it meets the requirements of the actual production. It is of practical value to improve the automatic technology of the economic forest fruit transportation gyro car.

In forest there may be a large variety of fruits so we can easily sort fruits one from another and we can also measure the weight of fruits after every sorting. We can also avoid the accident by any obstacle. System is also capable to detect overload if overload it take appropriate action by alarm.

Gyro car also transport fruits from one place to other place and its movement is totally automated. Gyro car wait at each station for 2 minute for sorting and loading gyro car is totally user friendly. it has full control of user.

VIII. FUTURE SCOPE

Same type of system we can used in mining areas to automatic sort of precious object and transport them one area to another.

In Docks Areas we also used this mechanism where Gyro car is replaced by ships to sort large container and to transport them to one area to another.

In manufacturing areas or in large factories there required to sort different component, objects and transport them to required area where we can used this mechanism

REFERENCES
[10] IR Sensor Applications – InfraTec