Abstract- A manet is grouping of freely movable nodes or autonomous nodes which are free to join or leave the wireless network without any central control. Due to this decentralised management there is security violence in wireless network due to various attacks like grayhole, blackhole, overflow routing table attack, DOS attacks. But here we discuss blackhole attack in MANET which occurs due to malicious nodes in network. To avoid this attack we implemented AODV protocol which is less reliable again black hole attack. To overcome the reliability issues in manet we implement Secure AODV (SAODV) protocol and analyze the reliability of MANET against black hole that how much secure will be the network against the attacks.

Keywords- AODV Ad hoc On-demand Distance Vector Protocol, CBR Constant Bit Rate, DSR Dynamic Source Routing Protocol, E-E delay End to End delay, MANET Mobile Ad hoc Network, PDR Packet Delivery Ratio, RREP Route Reply, RREQ Route Request, RRER Route Error, UDP/IP User Datagram Protocol / Internet Protocol

I. INTRODUCTION

Wireless ad-hoc networks are composed of autonomous nodes that are self-managed without any infrastructure. In this way, ad-hoc networks have a dynamic topology such that nodes can easily join or leave the network at any time. They have many potential applications, especially in military and rescue areas such as connecting soldiers on the battlefield or establishing a new network in place of a network, which collapsed after a disaster like an earthquake. To support this connectivity, nodes use some routing protocols such as AODV (Ad-hoc On-Demand Distance Vector), DSR (Dynamic Source Routing) and DSDV (Destination-Sequenced Distance-Vector). As wireless ad-hoc network slack an infrastructure, they are exposed to a lot of attacks. One of these attacks is the Black Hole attack. In the Black Hole attack, a malicious node absorbs all data packets in itself, similar to a hole which sucks in everything in. In this way, all packets in the network are dropped.

Security is the cry of the day. In order to provide secure communication and transmission, the engineers must understand different types of attacks and their effects on the MANETs.

Wormhole attack, Black hole attack, Sybil attack, flooding attack, routing table overflow attack, Denial of Service (DoS), selfish node misbehaving, impersonation attack are kind of attacks that a MANET can suffer from.

In the last few years, security of computer networks has been of serious concern which has widely been discussed and formulated. Most of the discussions involved only static and networking based on wired systems. However, mobile Ad-Hoc networking is still in need of further discussions and development in terms of security. With the emergence of ongoing and new approaches for networking, new problems and issues arise for the basics of routing. With the comparison of wired network Mobile Ad-Hoc network is different. The routing protocols designed majorly for internet is different from the mobile Ad-Hoc networks (MANET). Traditional routing table was basically made for the hosts which are connected wired to a non dynamic backbone. Due to which it is not possible to support Ad-Hoc networks mainly due to the movement and dynamic topology of networks.

To analyze the behaviour of wireless network we have implemented the AODV protocol but due to less secure channel between source and destination of the packets this protocol is less effective against blackhole attacks further studying the nature of blackhole attack we have implemented the Secure AODV protocol which provide more reliability and enhanced communication with the nearest node to source node by using the ‘from’ and ‘through’ entry in the routing table. All the analysis is taken on the network simulator (NS2) which provide graphical representation of black hole nodes in wireless movable network.

II. RELATED WORK

Deng et.al.[10] have proposed a solution against black hole attack by modifying the AODV protocol. This approach avoids malicious nodes advertising the route that is not existed. In order to check whether the route advertised is existed and free of malicious nodes, each intermediate node has to include the address of the next hop node in RREP packets. Once the source node received the RREP packet, it extracts the details of the next hop node and sends a further request to the next hop node.
This is to verify the existence of the next hop node and the routing metric value (i.e. the hop count) with the next hop node.

According to proposed solution [12] by Tamilselvan et.al, the source node has to wait for other replies with next hop information without sending the data packets to the destination. Once it receives the first RREP it sets timer in the „TimerExpiredTable“, to collect the further RREP from different nodes are stored in “Collect Route Reply Table”(CRRT) with the „sequence number“, and the time at which the packet arrives. In order to calculate the „timeout“ value, uses arrived time of the first RREP It first checks in CRRT whether there is any repeated next hop node. If any repeated next hop node is present, in route reply paths it assumes the paths are correct or the chance of malicious paths is limited. The disadvantages of the proposed solution are time delay, since source node has to wait for other route replies and it cannot detect cooperative black hole attack.

In [13] this paper authors Satoshi Kurosawa et.al. have introduced an anomaly detection scheme to detect black hole attack using dynamic training method in which the training data is updated at regular time intervals. They use the features to express the state of the network. In this scheme, the average of the difference between the Dst_Seq in RREQ packet and the one held in the list are calculated and this operation is executed for every received RREP packet.

Latha Tamilselvan, Dr. V Sankaranarayanan [14] proposed a better solution with the modification of the AODV protocol, which avoids multiple black holes in the group. It uses Fidelity table where every node that is participating is given a fidelity level that will provide reliability to that node. Any node having 0 value is considered as malicious node and is eliminated from the network. The fidelity levels of nodes are updated based on their trusted participation in the network.

In paper [16] authors K. Lakshmi et.al. have proposed and discussed a feasible solution for the black hole attacks that can be implemented on the AODV protocol. In this solution, compare the first destination sequence number with the source node sequence number, if there exists much more differences between them, surely that node is the malicious node, immediately remove that entry from the RR-Table. Final process is selecting the next node id that have the higher destination sequence number, is obtained by sorting the RR-Table according to the DSEQ-NO column, whose packet is sent to Receive Reply method to continue the normal AODV process.

Herminder Singh et.al. [14] have discussed the AODV protocol suffering from black hole attack and proposed a feedback solution which comparatively decreases the amount of packet loss in the network. The black holes by examining the no of sent packets at that node which will always be equal to zero for most of the cases. After the malicious black nodes have been detected, we can adopt a feedback method to avoid the reception of incoming packets at these black holes. The packets coming at the immediate previous nodes to black nodes are propagated back to the sender and the sender follows an alternative safer route to the destination. However, it cannot detect black hole nodes when they worked as a group.

Sen, Jet.al. have proposed mechanism [9] for defending against a cooperative black hole attack. This proposed mechanism modifies the AODV protocol by introducing two concepts, such as (a) data routing information (DRI) table and (b) cross checking. In the proposed scheme, the nodes that respond to the RREQ message of a source node during route discovery process send two bits of additional information. Each node maintains an additional DRI table. In the DRI table, the bit 1 stands for “true” and the bit 0 stands for “false”. The first bit “From” stands for the information on routing data packet from the node (in the node filed), while the second bit “Through” stands for information on routing data packet through the node. In this mechanism source node (SN) broadcasts a RREQ message to discover a secure route to the destination node. The intermediate node(IN) replies with Next Hop and the DRI of Next Hop Node (NHN).
III. SAODV PROTOCOL

Slightly changed AODV protocol which is known as SAODV (secure ad hoc on demand distance vector)[21] by introducing Data Routing Information (DRI) Table and route confirmation.

The solution to identify false black hole nodes acting in cooperation involves two bits of additional information from the nodes responding to the RREQ of source node S. Each intermediate node maintains an Data Routing Information (DRI) table. In the DRI table, 1 takes for ‘true’ and 0 for ‘false’. The first bit “From” stands for information on routing data packet from the node (in the Node field) and the second bit “Through” stands for information on routing data packet through the node (in the Node field). In reference to the example of Figure1, a sample of the database maintained by node D is shown in Table 1. The entry 1 1 for node C implies that node 4 has routed data packets from 3, and routed any data packets through 3 (before node 3 moved away from 4). The entry 1 0 for node B implies that, node D has successfully routed data packets from and through node B. The entry 0 0 for node 2 implies that, node D has NOT routed any data packets from or through node 2.

<table>
<thead>
<tr>
<th>Node #</th>
<th>Data Routing Information</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>From</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 1: DATA ROUTING TABLE FOR NODE D

(nodes through which the source node has routed data) to transfer data packets. In the protocol, the source node (SN) broadcasts a RREQ message to discover a secure route to the destination node. The Intermediate Node (IN) generating the RREP has to provide its Next Hop Node (NHN), and its DRI entry for the NHN. Upon receiving RREP message from IN, the source node will check its own DRI table to see whether IN is a reliable node.

If source node has used IN before to route data, then IN is a reliable node and source node starts routing data through IN. Otherwise, IN is unreliable and the source node sends FRq message to NHN to check the identity of the IN, and asks NHN: 1) if IN has routed data packets through NHN, 2) who is the current NHN’s next hop to destination, and 3) has the current NHN routed data through its own next hop. The NHN in turn responds with FRp message including 1) DRI entry for IN, 2) the next hop node of current NHN, and 3) the DRI entry for the current NHN’s next hop.

Based on the FRp message from NHN, source node checks whether NHN is a reliable node or not. If source node has routed data through NHN before, NHN is reliable; otherwise, unreliable. If NHN is reliable, source node will check whether IN is a black hole or not.

If the second bit (i.e. IN has routed data through NHN) of the DRI entry from the IN is equal to 1, and the first bit (i.e. NHN has routed data from IN) of the DRI entry from the NHN is equal to 0, IN is a black hole. If IN is not a black hole and NHN is a reliable node, the route is secure, and source node will update its DRI entry for IN with 01, and starts routing data via IN. If IN is a black hole, the source node identifies all the nodes along the reverse path from IN to the node that generated the RREP as black hole nodes. Source node ignores any other RREP from the black holes and broadcasts the list of cooperative black holes.

When node B1 responds to source node S with RREP message, it provides its next hop node B2 and DRI for the next hop (i.e. if B1 has routed data packets through B2). Here the black hole node lies about using the path by replying with the DRI value equal to 0 1. Upon receiving RREP message from B1, the source node S will check its own DRI table to see whether B1 is a reliable node. Since S has never sent any data through B1 before, B1 is not a reliable node to S. Then S sends FRq to B2 via alternative path S-2-4-B2 and asks if B2 has routed any data from B1, who is B2’s next hop, and if B2 has routed data packets through B2’s next hop. Since B2 is collaborating with B1, it replies positively to all the three requests and gives node 6 (randomly) as its next hop. When the source node contacts node 6 via alternative path S-2-4-6 to cross check the claims of node B2, node 6 responds negatively. Since node 6 has neither a route to node B2 nor has received data packets from node 2, the DRI value corresponding to B2 is equal to 0 0 as shown in Figure 1. Based on this information, node S can infer that B2 is a black hole node. If node B1 was supposed to have routed data packets through node B2, it should have validated the node before sending it. Now, since node B2 is invalidated through node 6, node B1 must cooperate with node B2. Hence bothnodes B1 and B2 are marked as black hole nodes and this information is propagated through the network leading to their listing as black holes, and revocation of their certificates. Further, S discards any further responses from B1 or B2 and looks for a valid alternative route to D. The process of cross checking the intermediate nodes is a one-time procedure which we believe is affordable to secure a network from multiple black hole nodes. The cost of cross checking the nodes can be minimized by letting nodes sharing their trusted nodes list (DRI table) with each other.

International Journal of Emerging Technology and Advanced Engineering

IV. RELIABILITY ANALYSIS OF SAODV OVER FALSE BLACKHOLE DETECTION

As we have seen the DRI table of the node D in above figure ,the From and Through bit for node 2 is 0 so the source node is assuming that node 2 will be the blackhole node. but sometimes this is not true, assume that from and through bits for node 2 in routing table of node B will be 1 and 0 respectively and node B wants to send data to node D through node 2. then according to DRI table of node D as shown in above figure will have from and through bit is 0 and node B send data to node 2 but node D do not receive data from node 2 so it will drop the packets from node2. But in real the node 2 is not the malicious node. This is the known as false black hole detection in SAODV protocol so that source node is not able to identify the malicious behavior. Further we will check reliability of SAODV protocol by measuring the no. of packets dropped from the total packets with the help of reliability formula

\[\text{Reliability}(R) = 1 - \frac{\text{Failure rate}}{\text{Total packets sent}} \]

By applying this formula we analyse the result as shown in table 2

We can represent the false black hole in SAODV with the graphical representation to more clarify the reliability by comparing outcomes of both protocols, here graph represents the comparison between the both AODV and SAODV protocol. As SAODV protocol is less reliable under false black hole node. Because when we transmitting 30 packets with equal interval with both protocol, AODV drops one packet while SAODV protocol drops four packets due false black hole nodes assumption that’s why there reliability got decreases.

<table>
<thead>
<tr>
<th>Time interval</th>
<th>Total packets sent</th>
<th>Packets dropped by AODV protocol</th>
<th>Reliability achieved in AODV protocol</th>
<th>Packets dropped by SAODV protocol</th>
<th>Reliability achieved in SAODV protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>30</td>
<td>1</td>
<td>0.97</td>
<td>4</td>
<td>0.87</td>
</tr>
<tr>
<td>60</td>
<td>30</td>
<td>2</td>
<td>0.93</td>
<td>3</td>
<td>0.90</td>
</tr>
<tr>
<td>90</td>
<td>30</td>
<td>1</td>
<td>0.97</td>
<td>5</td>
<td>0.83</td>
</tr>
<tr>
<td>120</td>
<td>30</td>
<td>1</td>
<td>0.97</td>
<td>4</td>
<td>0.87</td>
</tr>
</tbody>
</table>

Figure 2: Reliability Analysis of AODV ans SAODV.

V. CONCLUSION

By analyzing all the cases of AODV and SAODV protocol we can say that secure AODV protocol also have some limitations of detecting black hole node. We can also implement more security in MANET by avoiding false black hole detection SAODV protocol normal node is also treated as black hole node which is not in use for so long. So we will try to implement the new improved algorithm.

REFERENCE

