Design and Implementation of Improved Frequent Item Set Mining Technique On Electricity Billing System

Prof. (Dr.) Sanjeev Bansal¹, Sovers Singh Bisht²
¹,²Amity School Of Engineering And Technology, Amity University, Noida, India

Abstract—Electricity is one of the fundamental necessities of the human being which is commonly used for industrial, domestic and agricultural purposes, therefore problem arises when we distribute this electricity and cannot work beyond the meter readings. With the advent of time technology has provided tremendous advancements on its consumption, generation and distribution, one such area for its improvement is in its billing system and data mining approach has given a large scope for its improvement in billing system.

Our existing electricity board billing system is obsolete and time consuming. The approach here is based on consumption because we cannot rely on the meter reading as it might give faulty readings as the meter may be mutilated or damaged manually and their might be large differences between power consumption and the amount billed. This approach here also checks on electricity theft and helps in maintaining the electricity billing standards.

Keywords—frequent item set mining, database, meter reading, electricity billing, correlation, data compression and FP-tree pattern.

I. INTRODUCTION

This paper primarily focuses on the “design and implementation of the frequent item set mining technique on electricity billing system”. Association rules primarily focus on finding the hidden relationship between the stored databases. Hence the system can be related as rules which show relationship between the two classes. The object-oriented database consist of classes and as the classes grows hence the relationship between the classes thus association rules. In this context we design and improvise an algorithm based on electricity billing meter reading as the objects here are random and unique. This paper deals to design the right association rules for the object oriented database taken from the classes. If we think the universe is represented by the set of objects available and each object is in form of a boolean variable representation indicating the presence and absence of the object available.

These boolean variables can be used in future showing the frequency of occurrence of elements within a given time span thus in this paper we deal with the meter readings as the boolean variables to find hidden and frequent readings in a given billed transaction and it also checks the discrepancy within the billed items.

1.1 Existing System

Data mining (DM) is a step from Knowledge Discovery in Database (KDD) process, which is defined as a “nontrivial process of identifying valid, novel, potentially useful and ultimately understandable pattern in data” (Fayyad et al., 1996)[1]. Association rules are created by analyzing data for frequent item set. The technique for association rule mining is divided in two parts, first it mines necessary frequent itemsets from large datasets, and second one is generating fast association rules from previously mined datasets. Apriori algorithm deals with generating the support and confidence rules with candidate set generation which involves repeated number of scans and when the database is large it causes increase in time and space complexity due to which the process is not obsolete. The Apriori algorithm [4] uses a bottom-up breadth-first approach to find the large item set. As it was proposed to grip the relational data this algorithm cannot be applied directly to mine complex data. Another well-known algorithm is FP growth algorithm. It adopts divide-and-conquer approach. First it computes the frequent items and characterizes the frequent items in a tree called frequent-pattern tree. This tree can also utilize as a compressed database. The association rule mining is performed on the compressed database with the help of this FP tree. This indicates that the dataset needs to be inspecting once. Also this algorithm does not require the candidate item set generation. So, in comparison with Apriori algorithm, it is much better in terms of efficiency [10]. The rule seeks to correlate among the attributes in a database and is important in generating frequent itemsets from large databases.
1.2 Problem Statement

The current electricity billing system is generally not based upon any computer generated system and if it is it consists of many defects. The scope of fraud and irregular meter reading generation is of ample amount and this causes loss of revenue and higher power consumption due to false meter reading and tampered devices. Thus in this paper we provide an effective method by using the concept of data mining to effectively see the variations in bills generated in past and current time span. The billing system does not check the bills generated according to past transactions and current meter reading but randomly issues the bill amount here proposed system is used to check the frequency of bills in past and current and find the most appropriate bill which would be generated currently and if not there is a scope of meter false reading.

II. OBJECT ORIENTED LAYOUT

In this paper association rules can be represented through unified modeling language as a class diagram. Compressed FP tree is used for finding the frequent item set from the large datasets and represented through the diagram. This present work is useful when the database is growing continuously in generating of electricity bills and fraud detection. Unified modeling language (UML) represents the graphical view of the modeling language and the important feature of the UML is to design the software models. The electricity billing system in Indian context is primarily based upon the meter and plan opted to get billed. Thus in figure 1 the class diagram here is representation of a meter distributed with reference to a plan. This shows a one to one relationship between the meter and plan distributed accordingly. The interface shows how we can calculate meter details and show models. The figure 2 shows the meter, plan and meter reading which shows how a customer opted for a unique plan and what is its meter reading. The class diagram shown in figure 3 shows clearly how many to one association can be done to build a software according to a particular transaction of a meter being billed within a given time span.

Fig 1: Representation of binary Association

Fig 2: Representation of ternary Association

The object of this UML class diagram is to show how a billing process can be executed and how we can implement the algorithm for generating the exact frequent billed transactions. This result thus obtained helps in extracting the exact billed unit and how the current billed system is differentiated from previous bills.
The importance of an effective and efficient billing system cannot be overemphasized as this is very critical step as small errors can lead to substantial loss of revenue. The main theme of this paper is to design and construct of a computer based billing system to display the consumed power, the sale rate and other parameters.

III. PROPOSED CONCEPT

Suppose we have certain databases of a customer which shows his different meter readings and plans opted for billing, in this context he has been billed multiple times in a given period of time and thus the proposed system here is to find the most frequent billed transaction on which he can check his current billed system authenticity. The proposed algorithm for this purpose is a compressed form of FP tree based algorithm.

3.1 Correlation concept

As we are aware of the fact that mining frequent itemsets rely on the concept of correlation thus here according to the probability distribution theory two itemsets can be correlated according to the entropy of information contained within the itemsets. Entropy is the resultant of the probability distribution of elements which signifies how much information an element contains within a transaction.

According to the entropy elements is generally represented by the method as follows:

\[
\text{Entropy} = - \sum_{i=1}^{N} P_i \log (P_i)
\]

where,

\(P_i\) of an element \(i\) is given as frequency of element \(i\)/total number of elements thus we group the elements according to their occurrence in a particular transaction get the reduced tree based on frequent itemset approach.

Two items \(P1\) and \(P2\) can be correlated if they satisfy the following conditions:

\[P (P1P2) > P (P1)P (P2)\]

Here

\[P (P1P2) = \text{Probability of items P1 and P2 occurring simultaneously in a particular system i.e. the probability of occurrence of both P1 and P2 together/total number of occurrences, similarly we measure probability of P1 and P2. This shows that if two items occur together within a system than information gained is more as compared to items occurring alone thus the above concept represents that}\]

\[\text{Observed Probability } P (P1P2) > \text{Expected } P (P1)P (P2)\]

3.2 Proposed Algorithm

Algorithm: FP growth.

Mine frequent itemsets using an FP growth algorithm.

Input:

\(\text{min sup}\), the minimum support count threshold in terms of frequency of occurrence of item sets. i.e. required to group items for correlation.

Output:

The complete set of frequent item sets in a system billed generation process.

Method:

1. The FP -tree is constructed in the following steps:

 (a) Scan the database \(D\) within a customer once. Collect \(P\), the set of frequent item sets, and their frequency of occurrence. Sort \(P\) in support count descending order as \(L\), the list of frequent item sets.

 (b) Create the root of an FP tree, and label it as “null.” For each transaction \(\text{Trans}\) in \(D\) do the following. Select and sort the frequent item sets in system according to the order of \(L\). Let the sorted frequent item list in \(\text{system}\) be \(\{N\}\), where \(n\) is the first element and \(N\) is the remaining list. Call insert tree \((\{n\} \text{ in } N)\), which is performed as follows. If \(T\) has a child \(X\) such that \(X.\text{item-name}=n.\text{item-name}\), then increment \(\text{item sets}\)'s count by 1; else create a new node \(A\), and let its count be 1, its parent link be linked to \(T\), and its node-link to the nodes with the same \(\text{item-name}\) via the node-link structure. If \(A\) is nonempty, call insert tree \((N, A)\) recursively.
2. The FP-tree is mined by calling FP growth (FP tree, null), which is implemented as a following procedure to generate FP growth tree:

1. If tree contains a single path p then
2. For each combination generate nodes(b) in the path p and generate entropy by probability of occurrence item sets of each group in a bottom up fashion
3. pattern $b|a$ with $support\ count = minimum\ support\ count\ of\ items\ in\ b$;
4. else till each header of the tree {
5. continue this process for every combination of group of items in the tree with correlation
6. generate every conditional pattern base for each node in correlation such as
7. $P\ (P1P2) > P\ (P1)\ P\ (P2)$
8. Thus if observed probability $> expected\ probability$ and it satisfies $support\ count = minimum\ support\ count\ of\ items\ in\ b$ then
9. Call improved FP growth tree

3.3 Design of association rules

Now let us design the association rules for which table 1 is created for the object oriented database represented in the table. Object-oriented database is better than relational database because the relation of object-oriented database establishes the connection between objects and not a table.

Customer records are stored in data tables and large amount of bills are stored in table and these recorded figures helps in applying the above proposed algorithm.

The support count of the system is kept minimum so as to generate maximum number of groups and find frequent item sets to the lowest level of hierarchy which helps in effectiveness of the algorithm and in its implementation.

<table>
<thead>
<tr>
<th>S.no</th>
<th>Items Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Meter_id, Type-of_plan</td>
</tr>
<tr>
<td>2</td>
<td>Meter_id, Type-of_plan, date_of_reading, Bill_amount</td>
</tr>
<tr>
<td>3</td>
<td>Bill_amount, Type-of_plan, date_of_reading, Unit-rate</td>
</tr>
<tr>
<td>4</td>
<td>Meter_id, Type-of_plan, date_of_reading, no_of_units, Bill_amount</td>
</tr>
<tr>
<td>5</td>
<td>Date_of_reading, Meter_id, Type-of_plan, No_of_unit, Unit_rate, Bill_amount</td>
</tr>
</tbody>
</table>

Let us establish binary representation of above transactions and this show how we can represent these values in a compressed format. The presence of an item set in a particular TID is represented by 1 and absence by 0.

<table>
<thead>
<tr>
<th>TID</th>
<th>Meter_id</th>
<th>Type_of_plan</th>
<th>No_of_units</th>
<th>Unit_rate</th>
<th>Date_of_reading</th>
<th>Bill_amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Now these item sets can be arranged according to the algorithm and be represented in decreasing order of occurrence of elements and we find the probability distribution of elements to compress the elements so that we can generate and compressed FP tree. The more we group elements the more compressed tree can be produced. Let these item sets be represented as $\{I_1, I_2, \ldots, I_n\}$ to show the construction of the FP tree.

<table>
<thead>
<tr>
<th>Items</th>
<th>Elements</th>
<th>Frequency</th>
<th>Probability(f/n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I1</td>
<td>Type_of_plan</td>
<td>5</td>
<td>0.25</td>
</tr>
<tr>
<td>I2</td>
<td>Meter_id</td>
<td>4</td>
<td>0.2</td>
</tr>
<tr>
<td>I3</td>
<td>Date_of_reading</td>
<td>4</td>
<td>0.2</td>
</tr>
<tr>
<td>I4</td>
<td>Bill_amount</td>
<td>3</td>
<td>0.15</td>
</tr>
<tr>
<td>I5</td>
<td>No_of_unit</td>
<td>2</td>
<td>0.1</td>
</tr>
<tr>
<td>I6</td>
<td>Unit_rate</td>
<td>2</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Implementing the above proposed algorithm to construct a tree based on conditional item sets within a billing mechanism. This shows construction of an RFP tree based upon the system matrix is constructed as follows. Here the root consists of null value and every node is represented as a depth first search pre order traversal list.
Fig 4: A FP tree based on frequent item sets.

The above tree is a compressed from of a binary tree which is traversed in a bottom up fashion. It is compressed as it generated very less amount of candidate sets and hence reduces repeated number of scans from the database.

3.4 Result analysis.

The above tree comes into a conclusion of finally generating a conditional pattern base in a bottom up manner thus to obtain the frequent pattern from above tree.

The observed probability for the above FP tree can be generated as follows which shows the relation between every node with highest occurrence of item sets in this regard observed probability > expected probability of the data elements. Since when finding the conditional pattern base the elements with the support count less than minimum support count are pruned thus we finally obtain the frequent patterns which occur within the given database and hence a consumer can check the occurrence of elements and then decide to pay his bills accordingly.

Table 4: Frequent pattern for data elements

<table>
<thead>
<tr>
<th>Item sets</th>
<th>Min_sup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meter_id,Type_of_plan,Date_of_reading</td>
<td>3</td>
</tr>
<tr>
<td>Meter_id,Type_of_plan,Bill_amount</td>
<td>3</td>
</tr>
</tbody>
</table>

IV. CONCLUSION

This paper presents a new and improved mechanism to generated highly compressed frequent itemsets in context to electricity billing system. This shows there is ample scope for improvement in the billing system technology in the Indian context thus this algorithm when implemented efficiently has the following advantages which are given as follows:

- As much less is the probability that much less is the probability of occurrence of elements i.e. elements will be frequent but their probability of occurrence system based configuration will be less.
- Since the support count of the elements is kept minimum and is generating a frequent pattern it proves our result.
- The observed probability of occurrence of elements is less than probability of individually occurring elements hence redundancy is reduced for elements in the matrix table.
- Whenever we find probabilities of large datasets containing elements it becomes easier to generate fast moving data streams such as real time traffic and system monitoring thus clustering ahead becomes easier and compact.
- The tree generated is highly compressed and the redundancies of datasets have been highly reduced due to the grouping of data itemsets.
- This approach saves time and cost of scanning highly large incoming data item sets within a system. This algorithm transforms the problem of finding long frequent patterns into searching for shorter ones in much smaller conditional databases recursively and then concatenation the suffix.
- Therefore this approach reduces the size of pattern to be searched for and generates a routing table that reduces the time complexity on large streams of data.

V. FUTURE SCOPE

In future this algorithm can be implemented on generation of a java code for the display of the electricity billing system as UML used is a powerful tool to adopt and generate new sequences from existing ones.
It can also be used for hand held devices and this algorithm can also be used for credit card collection system where numerous transactions occur per day thus research can be elaborated and results can be highly compressed by implementing on different software tools.

REFERENCES

[3] Improved algorithm for frequent itemset mining based on apriori and FPtree-Sujata Dandu, B.L. Deekshatulu & Preei Chandra Global Journals Inc. (USA) 2013

[6] An effective approach in data mining to reduce redundancies in large databases - Sovers Singh & Dr. Sanjeev Bansal- IJETAE-2012

[8] Contrasting Correlations by an efficient double clique Condition Aixiang Li, Makoto Haraguchi, and Yoshiaki Okubo.

[9] Implementation of apriori algorithm on electricity billing system Vipin Saxena, Sudhir Kumar Singh IJCA Jan 2014

[11] Mining frequent patterns without candidate generation - Jaiwei Han, Jian Pei, Yiwen Yin