Tracking Low Grade Attack Using Cisco Packet Tracer Netflow

Manish khule¹, Megha Singh²

¹²Department of Computer Engineering, C.I.I.T, Indore, India

Abstract—Detection and remediation of security incidents is an increasingly important task of system administrators. Specifically, system administrators typically have to base their actions on observing the local traffic to and from their own networks as well as global security incident alerts from organizations software and hardware vendors. However, stealthy targeted attacks may slip below detection thresholds both in the local data alone or on the global scale. The approach uses Cisco packet tracer, a commonly available non-intrusive data source, analyzes communication to/from the group, and alerts the group members when suspicious activity is detected. A group-based detection has the ability to detect incidents that would fall below local detection thresholds while maintaining the number of alerts at a manageable level for each day.

Keywords—Cisco Packet Trace, Netflow, Network monitoring, Network Security, worms detection.

I. INTRODUCTION

Network monitoring approaches have been proposed and developed throughout the years, each of them serving a different purpose. They can generally be classified into two categories: active and passive. Active approaches, such as implemented by tools like Ping and Trace route, inject traffic into a network to perform different types of measurements. Passive approaches observe existing traffic as it passes by a measurement point and therefore observe traffic generated by users. One passive monitoring approach is packet capture. [1] This method generally provides most insight into the network traffic, as complete packets can be captured and further analysed. However, in high-speed networks with line rates of up material. To 100 Gbps, packet capture requires expensive hardware and substantial infrastructure for storage and analysis. Another passive network monitoring approach that is more scalable for use in high-speed networks is flow export, in which packets are aggregated into flows and exported for storage and analysis. A flow is defined as “a set of IP packets passing an observation point in the network during a certain time interval, such that all packets belonging to a particular flow have a set of common properties”. These common properties may include packet header fields, such as source and destination IP addresses and port numbers, packet contents, and meta-information.

Initial works on flow export date back to the nineties and became the basis for modern protocols, such as NetFlow and IP Flow Information export.

Targeted attacks might not leave a large traffic footprint in the targeted organization since one machine with access to the desired information or control system may be sufficient for the attacker to achieve their goals. It is often difficult to detect such low-footprint attacks based on local monitoring alone because it is often necessary to set local alerting thresholds high enough not to generate too many false positives and overwhelm the system administrators. But as a result, a stealthy attack or compromise may lay undetected. [2] Therefore, it is possible for an attacker to target many such organizations without being detected. For example, the attacker may want to maximize profit by attacking multiple financial organizations concurrently before the vulnerability used is detected and corrected. Similarly, terrorists may require the control of many companies to achieve their goal of large scale damage.

Fig 1. Netflow configuration using Cisco 2811 ISR routers

In this paper, we present a novel method for detecting stealth, low-grade attack incidents by utilizing information across a group of organizations (e.g., banking industry, energy generation and distribution industry). We will show by using an example that we can find possible attacks (or attempts) that only transfer very little data (e.g., a few bytes) and thus would remain undetected by conventional approaches. The remainder of this paper is structured as follows. In Section II, we present the technical approach based on NetFlow data and construction of groups of interest.
II. APPROACH

A. Service vision

Our technique is based on the concept of group, in our case defined as a collection of (at least two) organizations. We can specify based on any criteria relevant for attack detection.[3] For example, it could consist of businesses in a particular industry (e.g., banking, health care, insurance, etc), organizations within a country (e.g., businesses and government agencies in one country), or organizations with particular Type of valuable information (e.g., industrial espionage or customer credit card information).[11] We detect stealthy security attacks by observing the communication to/from the member organizations of a group. The intuition being that within each organization only very few machines may be attacked or compromised and as a result an attack can be very hard to detect within each organization. However, by observing the communication behavior across multiple organizations in the group, such stealthy behavior may become visible.

Given that we analyze communication in the Internet, each organization is defined by the list or range of IP addresses belonging to the organization. We consider Internet communication connections (reported by netflow, for example) within the groups and between groups and external IP addresses who do not belong to any group. For our analysis, all the IP addresses within an organization can be collapsed into one identifier representing the organization. Any communication between two IP addresses where neither belongs to one of our groups and neither has communicated with a group in the past can be ignored. Furthermore, communication with IP addresses belonging to commonly used Internet services (e.g., search, news, social media) can be white listed and removed from consideration. We construct a communication graph for each IP address that communicates with at least one organization in a group as illustrated in Figure 1. This figure shows the communication graph for an external IP address (i.e., some IP address outside any of the groups of interest). Indicates that A has sent messages to B. Although not depicted in the figure, each edge may contain additional information, such as the combinations of source and destination ports used. The weight of the edge is used to quantify the importance of the communication.[4] The importance can be based simply on the number of messages or bytes sent, or the number of contacted individual members in the targeted organization. However, some communication may be more important than others from security point of view.

For example, some port numbers are more often involved with malicious activity (e.g., based on CERT reports) and communication using such ports can be weighted more heavily. The weight is also used to limit the size of each graph. The size of the graph is determined by the number of nodes it contains. If the size exceeds a given threshold, we remove the weakest links until the threshold is reached. This is necessary because storing all communications would require too much space even for a single day. For example, in our data set consisting of heavily sampled netflow, a given weekday contains about 860 million entries. These 860 million recorded netflows originate in 28 million distinct IP addresses. Therefore, if we would not filter unimportant IP addresses, we would need to store 28 million graphs. Moreover, each of these 28 million IP addresses often connects with 1 to 2 million other IP addresses. Thus, if we did not limit the size of each graph, we would have some graphs that are too large to fit into memory.[11] The situation would be even more challenging if we analyzed the data for one month or a week instead of the current one day at a time. As already stated, we also consider communication within a group and across groups. With that, we are able to detect already compromised computers inside an organization when they try to attack further organizations as shown in Figure 2. [6] To reduce the number of false positives (many organizations have frequent contact with other organizations of the same or other groups), a computer inside an organization that belongs to a group (or is contained in the whitelist) has to show more suspicious behavior than an external IP address before an alarm is generated. For example, we do not consider communication via port 443 with or across groups. Given such communication graphs, a potential security incident is suspected when an IP address communicates with a specified number of group members. Typical examples of security threats that can be detected using this approach include bot net controllers managing a number of bots in the group, compromised machines downloading stolen information on a dedicated server, an attacker targeting machines in multiple organizations, as well as many security policy violations (e.g., illegal software download sites, etc). The number of alarms can be controlled using thresholds and the system can memorize IP addresses that have already been reported recently. When there are false positives, the system administrators can extend the white list. An IP address may contact a large number of group members either because the group is actually targeted or if the attacker is targeting all [11] or most of the Internet (e.g., broad port scan).
The system administrators may want to react differently to these alternative scenarios. Therefore, for each IP address that has contacted a group member, our system keeps track of how many times it has communicated with IP addresses outside our groups of interest.

B. Input data

Our group-based alerting service uses NetFlow as its input data source (although other types of information could be utilized as well). NetFlow is a standard data format collected and exported by most networking equipment, in particular, network routers. [7] It provides summary information about each network communication passing through the network equipment. Specifically, a network flow is defined as an unidirectional sequence of packets that share source and destination IP addresses, source and destination port numbers, and protocol (e.g., TCP or UDP). Each NetFlow record carries information about a network flow including the timestamp of the first packet received, duration, total number of packets and bytes, input and output interfaces, IP address of the next hop, source and destination IP masks, and cumulative TCP flags in the case of TCP flows. [8] Note, however, that the NetFlow record does not contain any information about the contents of the communication between the source and destination IP addresses.

The group-based alerting service requires access to NetFlow to/from each of the organizations in the group. Such data can be collected by each of the organizations in the group at their edge routers and then collected at a central location for processing. Alternatively, it can be provided by an ISP that serves a number of the organizations in the group. Note that the NetFlow data may be sampled (to reduce the volume of the data) and the actual IP addresses of the computers within each organization can be obfuscated prior to the analysis (e.g., all IP addresses belonging to an organization can be collapsed into one address) if desired. Given the collected Netflows and the IP address ranges, Belonging to each member organization in the group, our alerting service analyses the data (either real time or in daily or hourly batches) and generates alerts to the system administrators. [9] The analysis algorithm is described. A white list can be used to eliminate any legitimate communication destinations from consideration (e.g., search engines, CDNs, banking, on-line retailers, etc).

III. IMPLEMENTATION

A. Filtering

The filter is an essential part of our analysis and its role is to remove irrelevant flow records and to reduce the amount of data that needs to be processed by the graph component. [12] For example, commonly used search, news, social media, and entertainment web sites are used so frequently that they would appear with almost every group. Furthermore, any traffic that does not involve at least one group member is not relevant for the analysis and is filtered out. Other filtering actions can be chosen based on data volume and perceived threat vectors. For example, HTTP-traffic may be filtered to reduce data volume, but at the risk of missing attacks that use HTTP (port 80).

I: Example Filter algorithm

```plaintext
input : (src-IP, src-port, dst-IP, dst-port, transferred-bytes)
output: The same as the input, if not filtered
//collapse IP addresses
src-IP, dst-IP = collapse(src-IP), collapse(dst-IP);
//filter IPs of commonly used web sites
if src-IP € whitelist then
  return ;;
end
//filter web-accesses to group-members
if dst-IP € group then
  if src-IP € group then
    if src-port = 80 then
      return ;;
    end
  end
end
end
//only forward if one of the IPs is in the group
if dst-IP € group OR src-IP € group then
  return (src-IP, src-port, dst-IP, dst-port, transferred bytes);
end
```

Algorithm 1 shows an example filter component that filters connections based on their ports, and source and destination IP addresses. [14] First, the algorithm collapses IP addresses for an organization into one address. If, for example, an organization has the IP range from 141.1.0.0 to 141.85.255.255 and either the src-IP or dst-IP are within this range, it is set to 141.1.0.0. We then discard every connection from IP addresses that are contained in the white list. Second, accesses to a group member’s web-server are filtered. Finally, we only forward the event message if at least one of the connection end-points is contained in the group.
Netflow version 9 was designed to collect detailed network traffic information used by network operators for billing assessment, and to be easily monitored. This feature is used by network operators for billing network users. NetFlow records are exported to a Netflow collector using User Datagram Protocol (UDP).

This feature is used by network operators for billing network users. NetFlow records are exported to a Netflow collector using User Datagram Protocol (UDP).

The detection algorithm can be run either for all IP addresses at once or individually for each IP address. Therefore, it is possible to provide different detection latencies.[7] For example, to detect a suspicious IP address the earliest possible, the algorithm must be executed as soon as a message is received for its source-IP’s top-K. If this is not necessary, the algorithm can be run for all top-Ks in one graph process at any desired interval. The generated alarms can be emailed to the system administrators in the affected organizations or posted on a security dashboard. The reports contain the complete top-K for each suspicious IP address, including the port mappings.

IV. EVALUATION

A. Input data and general setup

Our input data-set is heavily sampled netflow from an ISP. In the first step, we remove all unimportant fields, leaving only the source-IP, destination-IP, source-port, destination-port, and the number of transferred bytes. This sums up to roughly 43 GB of processed netflow per day. [20] The groups lists define a groups with the IP address ranges of all its members and each groups is stored in a separate file (the white list is simply a “special” groups). If a company or institution has more than one IP address range assigned, we can simply add each range as a separate entry. Moreover, an entry in one groups is allowed to be a member in other groups as well.

B. Performance

Cisco Packet Tracer is a network simulation program that allows students to experiment with network behavior and ask “what if” questions. As an integral part of the Networking Academy comprehensive learning experience, Packet Tracer provides simulation, visualization, authoring, assessment, and collaboration capabilities and facilitates the teaching and learning of complex technology concepts.

Netflow is a network analysis protocol that was initially created by Cisco to give the ability to collect detailed information about network traffic as it flows through a router interface. The data processed by Netflow collectors provides the network administrator with detailed traffic information such as the source and destination of the traffic, class of service,Netflow version 9 was standardized in 2008 as IXP by the IETF organization. This feature is used by network operators for billing network users. NetFlow records are exported to a Netflow collector using User Datagram Protocol (UDP).
The IP address and the destination UDP port of the NetFlow collector have to be configured on the sending device (router or L3 switch). The standard value is UDP port 2055, but other values like 9555 or 9995 can also be used.

Netflow Network Components:

NetFlow components include the following:

- Network devices that are configured for NetFlow.
- NetFlow Collector, which receives NetFlow information from network devices.

Netflow Network components or devices collect IP traffic information on interfaces where NetFlow is configured. Network devices then export this information as NetFlow records to a central server that runs NetFlow Collector software, which also performs traffic analysis. Information captured and exported by NetFlow is done independently on each internetworking device or component. NetFlow does not need to be configured on each router in the network.

In this lab, we will use Cisco’s Packet Tracer to configure a small network consisting of few different devices. We will use this topology to demonstrate how to configure to configure NetFlow version 9 on a Cisco IOS. Configuring the protocol is relatively simple. First, it is necessary to ensure the Cisco Express Forwarding (CEF) is enabled, this is the default on most new Cisco devices, but you should check if it is on the device you are using.

```
Router# show ip cef
```

To enable Cisco Express Forwarding (CEF) do the following:

```
Router# config t
Router(config)# ip cef
```

Then the interface selected must be configured to monitor traffic. There are two methods; however only one of them is supported in Packet Tracer. For example, if you want all incoming (ingress) and outbound (egress) traffic to be collected on the Fa0/0 interface, you would enter the following commands:

```
Router# config t
Router(config)# interface Fa0/0
Router(config-if)# ipflow ingress
Router(config-if)# ipflow egress
```

Then configure the device so the data can be sent to the collector:

```
Router# config t
Router(config)# ipflow-export source Fa0/0
Router(config)# ipflow-export destination 192.168.100.100 9996
Router(config)# ipflow-export version 9
```

The Traffic can now be displayed on the selected computer using the NetFlow application.

```
Fig 2. Shows Virtual Lab set up Using Cisco Packet tracer.
```

Fig 2 show the virtual lab set up of Cisco packet tracer consist of three router R1, R2, R3 and netflow server configuration of set up are shown below.

```
hostname R1
ip cef
no ipv6 cef
interface GigabitEthernet0/0
ip flow egress
ip flow ingress
ip address 10.1.1.1 255.255.255.252
duplex auto
speed auto
interface GigabitEthernet0/1
ip flow egress
ip flow ingress
```
ip address 192.168.40.1 255.255.255.0
duplex auto
speed auto
interface GigabitEthernet0/2
ip address 192.168.100.1 255.255.255.0
duplex auto
speed auto
interface Serial0/0/0
ip flow egress
ip flow ingress
ip address 10.2.2.1 255.255.255.252
clock rate 2000000
interface Serial0/0/1
ip flow egress
ip flow ingress
ip address 10.3.3.1 255.255.255.252
clock rate 2000000
interface Vlan1
no ip address
shutdown
router rip
network 10.0.0.0
network 192.168.40.0
network 192.168.100.0
ip classless
ip flow-export destination 192.168.100.100 9996
ip flow-export version 9
ip flow-export source GigabitEthernet0/2
snmp-server groups CCNA RW
logging 192.168.40.110
line con 0
line aux 0
line vty 0 4
login
ntp server 192.168.40.100 key 0
end

A. Using Microsoft Visual Studio

Microsoft Visual Studio is an integrated development environment (IDE) from Microsoft. It is used to develop computer programs for Microsoft Windows, as well as web sites, web applications and web services. Fig3 Visual Studio uses Microsoft software development platforms such as Windows API, Windows Forms, Windows Presentation Foundation, Windows Store and Microsoft Silverlight. It can produce both native code and managed code.

Microsoft Visual Studio is an integrated development environment[14] (IDE) from Microsoft. It is used to develop computer programs for Microsoft Windows, as well as web sites, web applications and web services. Visual Studio uses Microsoft software development platforms such as Windows API, Windows Forms, Windows Presentation Foundation, Windows Store and Microsoft Silverlight. Fig4 It can produce both native code and managed code.

By Using Microsoft Visual studio we can find the suspicious communication from the database given by Cisco packet tracer netflow.
Fig 4. Record Given by Cisco Netflow.

Above record is given by Cisco Packet tracer by using netflow this record is evaluated by applying algorithm.

Fig 5. Final result obtain by evaluation of records.

Fig 5. Above result shows the final record of suspicious activity from the networks.

V. RELATED WORK

A number of tools and techniques have been developed to process and visualize netflow data (see for a survey). Netflow processing tools include OSU flow-tools, SiLK, and Nfdump 5. In addition to command line tools, numerous graphical user interfaces exist to visualize and query network activity, including NTOP 6, NfSen, NfSight, VisFlowConnect, FlowScan, NetPY, FloVis, VIAssist, and NFlowVis. While visualization tools allow the users to view the netflow data from different perspectives to locate suspicious activity, our approach analyzes the data and produces small number of meaningful alarms each day.4 Also, our focus on groups allows us to detect attacks and suspicious behavior that is focused on a potentially small groups, but would not show significantly on a global scale. Detection of similar communication behavior in multiple hosts has been used previously to raise suspicion that hosts with the correlated behavior may be members of the same botnet.

For example, uses netflow data to identify sets of suspicious hosts and then uses host level information (collected on each host by a local monitor) to confirm or reject the suspicions. However, detection of botnets is simplified by the fact that the bots typically act in unison (e.g., start spamming or DDoS attack against a target at the same time). Indeed, much of the work in this area (e.g., BotMiner) specifically build detection mechanisms based on the assumptions of the communication behavior required for a botnet. Furthermore, to our knowledge, prior work is limited to detecting similar behavior within one organization. The concept of using a groups to help detect security events has been used in the past.19 For example, the Ensemble system detects applications that have been hijacked by using the idea of a trusted groups of users contributing system-call level local profiles of an application to a common merging engine. The merging engine generates a global profile that can be used to detect or prevent anomalies in application behavior at each end-host in real time. A similar concept of collaborative learning for security is applied to automatically generate a patch to the problematic software without affecting application functionality. PeerPressure automatically detects and troubleshoots misconfigurations by assuming that most users in the groups have the correct configuration. Cooperative Bug Isolation leverages the groups to do statistical debugging based on the feedback data automatically generated by groups users. Vigilante apply the groups[17] concept for containment of Internet worms by groups members running detection engines on their machines, where the detection engines distribute attack signatures to other groups members when a machine is infected.

VI. CONCLUSIONS

In this paper, we have presented a groups-based analysis and alerting technique for detecting small-footprint attacks targeting groups of interest for attackers such as financial institutions, e-commerce web site, or the electricity generation and distribution infrastructure. By comparing communication behavior across the member organizations in the groups, it is possible to detect suspect behavior that may fall below detection thresholds at individual member organizations. A white list can be used to avoid repeating false positives. We have implemented the analysis algorithm in a scaleable distributed architecture that can process large volumes of netflow data efficiently.
REFERENCES

