On The K- Metro Domination Number of Cycle

Lakshmi Narayana S¹, Vishu Kumar M²

¹²School of Applied Sciences, REVA University, Bangalore-560064, India

Abstract— A dominating set D of a graph \(G = \langle V,E \rangle \) is called metro dominating set of \(G \) if for every pair of vertices \(u, v \) there exists a vertex \(w \) in \(D \) such that \(d(u, w) + d(v, w) \). The k-metro domination number of a cycle \(\gamma_{\beta_k}(C_n) \) is the order of a smallest \(k \)-dominating set of \(C_n \) which resolves as a metric set. In this paper, we calculate the \(k \)-metro domination number of cycles.

Keywords— Domination Number, K-Domination number, Metric Dimension, Land marks, Metro Domination number.

AMS Subject Classification: 05C56.05C38

I. INTRODUCTION

Let \(G(V,E) \) be a graph. A subset of vertices \(D \subseteq V \) is called a dominating set (\(\gamma \)-set) if every vertex in \(V - D \) adjacent to atleast one vertex in \(D \).

The minimum cardinality of a dominating set is called the domination number of the graph \(G \) and is denoted by \(\gamma(G) \).

The Metric Dimension of a graph \(G \) is denoted by \(\beta(G) \), is defined as the cardinality of a minimal subset \(S \subseteq V \) having the property that for each pair of vertices \(u, v \) in \(G \) there exists a vertex \(w \) in \(S \) such that \(d(u, w) + d(v, w) \). The coordinate of each vertex \(v \) of \(V(G) \) with respect of each landmark \(u_i \) belong to \(S \) is defined as usual with \(i^{th} \) component of \(v \) as \(d(u, v_i) \) for each \(i \) and is of dimension \(\beta(G) \).

Metro Domination number introduced by B.Sooryanarayana, Raghunath. [5]. Fink and Ja-cobson [9] , [10] in 1985 introduced the concept of multiple domination. A subset \(D \) of \(V(G) \) is \(K \)-dominating in \(G \) if every vertex of \(V - D \) has at least \(k \) neighbours in \(D \).

The cardinality of minimum \(K \)- dominating set is called \(K \)- domination number \(\gamma_K(G) \).

A dominating set \(D \) of a graph \(G(V,E) \) is called metro dominating set of \(G \) if for each pair of vertices \(u, v \) there exists a vertex \(w \) in \(D \) such that \(d(u, w) + d(v, w) \).

II. OUR RESULTS

Theorem 2.1: For \(n \geq 6, n \neq 10 \)

\[
\gamma_{\beta_2}(C_n) = \left\lceil \frac{n}{5} \right\rceil
\]

Proof. : Let \(v_1, v_2, v_3, \ldots, v_n \) be the vertices of the cycle \(C_n \). Let \(D \) be the minimum 2-dominating set of \(C_n \). Let \(W = V - D \). Now each \(v_i \in W \) is either adjacent to any of the vertex \(D \) or atmost at distance two from atleast one of the vertex of \(D \). Any vertex \(v_k \in D \), will dominates at most 5 vertices including itself. Since the metric dimension of a cycle is two, as in [5], \(D \) also serves as a metric set.

Thus \(\gamma_{\beta_2}(C_n) \geq \left\lceil \frac{n}{5} \right\rceil \) \hspace{1cm} (i)

To prove \(\gamma_{\beta_2}(C_n) \leq \left\lceil \frac{n}{5} \right\rceil \)

We define the 2-dominating set as

Case 1: For \(n \geq 6, n \neq 10 \)

\[D = \left\{ v_{5k-4}; 1 \leq k \leq \left\lceil \frac{n}{5} \right\rceil \right\} \cup v_n \]

Case 2: \(n = 10 \)

\[D = \left\{ v_{5k-4}; 1 \leq k \leq \left\lceil \frac{n}{5} \right\rceil \right\} \cup v_n \]

We note that the dominating sets serves as a two dominating set also \(D \) resolve as a metric set.

Thus \(\gamma_{\beta_2}(C_n) \leq \left\lceil \frac{n}{5} \right\rceil \) \hspace{1cm} (ii)

from (i) and (ii)

\[
\gamma_{\beta_2}(C_n) = \left\lceil \frac{n}{5} \right\rceil
\]
Figure 1

Case 1:

\[\gamma_{\beta_2}(C_5) = 2 \]

\[D = \{v_1\} \] will be the 2-dominating set but which is not serves as a metric set \(\beta(C_n) = 2 \) hence we have to choose one more vertex as a land mark show in to achieve metric set figure 1a,

Now \[D_1 = \{v_1, v_5\} \] serves as both 2-dominating and metric set.

Thus \[\gamma_{\beta_2}(C_5) = 2 \]

Case 2:

\[\gamma_{\beta_2}(C_{15}) = 3 \]

Theorem 2.2: For \(n \geq 8, n \neq 14 \)

\[\gamma_{\beta_2}(C_n) = \left \lfloor \frac{n}{7} \right \rfloor \]

Proof: Let \(v_1, v_2, v_3, \ldots, v_{15} \) be the vertices of the cycle \(C_{15} \). Let \(D \) be the minimum 3-dominating set of \(C_{15} \). Let \(W = V - D \), Now each \(v_i \in W \) is either adjacent to any of the vertex \(D \) are atleast the distance three from atleast one of the vertex of \(D \). So any vertex \(v_k \in D \), will dominates atmost 7 vertices. Since metric dimension of a cycle is 2 [5].

\[D \] also serves as a metric set.

Thus

\[\gamma_{\beta_2}(C_{15}) \geq \left \lfloor \frac{n}{7} \right \rfloor \]

(i)

To prove \[\gamma_{\beta_2}(C_n) \leq \left \lfloor \frac{n}{7} \right \rfloor \]
We define the 3-dominating set

Case 1: $n \geq 8, n \neq 14$

$$D = \{v_{k-6}; 1 \leq k \leq \lceil \frac{n}{7} \rceil \}$$

Case 2: $n = 14$.

$$D = \{v_{k-6}; 1 \leq k \leq \lceil \frac{n}{7} \rceil \cup v_n \}$$

We note that the dominating sets serves as a metric set.

Thus

$$\gamma_{\beta_3}(C_n) \leq \left\lceil \frac{n}{7} \right\rceil$$ \hspace{1cm} (ii)

from (i) and (ii)

$$\gamma_{\beta_3}(C_n) = \left\lceil \frac{n}{7} \right\rceil$$

C6:

$$D = \{v_1\}$$ will be the 3-dominating set but which is not serves as a metric set. Hence we have to choose one more vertex as a land mark as shown in figure 4a, to achieve metric set.

Now $D_1 = \{v_2, v_6\}$ serves as both 3-dominating and metric set.

Thus $\gamma_{\beta_3}(C_6) = 2$.

Case 1:

C22:

$$\gamma_{\beta_3}(C_{22}) = 4$$

Case 2: $n = 14$, C_{14}:

$$D = \{v_1, v_6\}$$ will be the minimum 3-dominating set but which does not serves as a metric set, because v_1 and v_6 are antipodal vertices. Hence we have to choose one more vertex as a land mark as shown in figure 6a.

Now $D_1 = \{v_1, v_3, v_{14}\}$ serves as both 3-dominating and metric set.

Thus $\gamma_{\beta_3}(C_{14}) = 3$.

Theorem 2.3: For $n \geq 10, n \neq 18$.

$$\gamma_{\beta_4}(C_n) = \left\lceil \frac{n}{9} \right\rceil$$

Proof: Let $v_1, v_2, v_3, \ldots, v_n$ be the vertices of the cycle C_n. Let D be the minimum 4-dominating set of C_n. Let $W = V - D$. Now each $v_i \in W$ is either adjacent to any of the vertex D or atmost the distance four from at least one of the vertex of D. So any vertex $v_k \in D$ will dominates atmost 9 vertices. Since metric dimension of a cycle is 2. D also serves as a metric set.

Thus

$$\gamma_{\beta_4}(C_n) \geq \left\lceil \frac{n}{9} \right\rceil$$ \hspace{1cm} (i)
To prove
\[
\gamma_{\delta_4}(C_n) \leq \left\lceil \frac{n}{9} \right\rceil
\]
We define the 4-dominating set

Case 1: \(n \geq 10, n \neq 14 \)
\[D = \left\{ v_{9k+b} : 1 \leq k \leq \left\lceil \frac{n}{9} \right\rceil \} \]

Case 2: \(n = 14 \)
\[D = \left\{ v_{9k+b} : 1 \leq k \leq \left\lceil \frac{n}{9} \right\rceil \} \cup v_n \]

We note that D serves as a 4-dominating set, also D resolve as a metric set
Thus
\[
\gamma_{\delta_4}(C_n) \leq \left\lceil \frac{n}{9} \right\rceil
\]

from (i) and (ii)
\[
\gamma_{\delta_4}(C_n) = \left\lceil \frac{n}{9} \right\rceil
\]

Cs:

Now \(D_1 = \{ v_1, v_3 \} \) serves as both 4-dominating and metric set.
Thus
\[
\gamma_{\delta_4}(C_9) = 2
\]

C9:

\[
D = \{ v_1 \}, \text{ is 4-dominating set which is not a metric set.}
\]
Therefore \(D = \{ v_1, v_3 \} \) serves as both 4-dominating and metric dimension set.
Thus
\[
\gamma_{\delta_4}(C_9) = 2
\]

Case 1: \(n \geq 10, n \neq 18 \)

C25:

\[
\gamma_{\delta_4}(C_{25}) = 3
\]
Case 2: \(n = 18 \)

\[C_{18} : \]

\[D = \{ v_1, v_{10} \} \] will be the minimum 4-dominating set but which does not serves as a metric set, because \(v_1 \) and \(v_{10} \) are antipodal vertices. Hence we have to choose one more vertex as a landmark as shown in figure 10a.

Now \(D_1 = \{ v_1, v_{10}, v_{18} \} \) serves as both 4-dominating and metric dimension set.

Thus \(\gamma_{\beta_5}(C_{18}) = 3 \)

Theorem 2.4: For \(n \geq 12, n \neq 22 \)

\[\gamma_{\beta_5}(C_n) = \left\lceil \frac{n}{11} \right\rceil \]

Proof: Let \(v_1, v_2, v_3, \ldots, v_n \) be the vertices of the cycle \(C_n \). Let \(D \) be the minimum 5-dominating set of \(C_n \). Let \(W = V - D \). Now each \(v_i \in W \) is either adjacent to any of the vertex \(D \) or at most at the distance five from at least one of the vertex of \(D \). So any vertex \(v_k \in D \), will dominates at most 10 vertices. Since metric dimension of a cycle is 2. \(D \) also serves as a metric set.

Thus \(\gamma_{\beta_5}(C_n) \geq \left\lceil \frac{n}{11} \right\rceil \) \hspace{1cm} (i)

To prove

\[\gamma_{\beta_5}(C_n) \leq \left\lceil \frac{n}{11} \right\rceil \]

We define the 5-dominating set

Case 1: \(n \geq 12, n \neq 22 \)

\[D = \{ v_{11k-10} : 1 \leq k \leq \left\lfloor \frac{n}{11} \right\rfloor \} \]

Case 2: \(n = 22 \)

\[D = \{ v_{11k-10} : 1 \leq k \leq \left\lfloor \frac{n}{11} \right\rfloor \} \cup v_n \]

We note that \(D \) serves as a 5-dominating set, also \(D \) resolve as a metric set.

Thus

\[\gamma_{\beta_5}(C_n) \leq \left\lfloor \frac{n}{11} \right\rfloor \] \hspace{1cm} (ii)

from (i) and (ii)

\[\gamma_{\beta_5}(C_n) = \left\lfloor \frac{n}{11} \right\rfloor \]

C_{10}:

\[D = \{ v_1 \} \], will be the 5-dominating set but which is not serves as a metric set. Hence we have to choose one more vertex as a landmark shown in figure 11a, to achieve metric set.

Now \(D_1 = \{ v_1, v_{10} \} \) serves as both 5-dominating and metric set.

Thus \(\gamma_{\beta_5}(C_{10}) = 2 \)
Case 1: \(n \geq 12, n \neq 22 \)

\[y_{\beta_2}(C_{16}) = 2 \]

Case 2: \(n = 22 \)

\[y_{\beta_2}(C_{22}) = 3 \]

Theorem 2.4: For \(n \geq 2(k+1), n \neq 4k+2 \)

\[y_{\beta_2}(C_n) = \left\lfloor \frac{n}{2k+1} \right\rfloor \]

Proof follows from the generalisation of theorem 1, theorem 2, theorem 3 and theorem 4

REFERENCES

