International Journal of Emerging Technology and Advanced Engineering

Equations of Translational-Rotational Motion of A Spheroidal Satellite in A Photogravitational Restricted Three Body Problem

Manish Prabha¹, P. K. Choudhary²
¹Department of Mathematics, M.D.D.M.College, B.R.A. Bihar University, Muzaffarpur, Bihar (India)
²Department of Mathematics, Dr. J. Mishra College B.R.A. Bihar University, Muzaffarpur, Bihar (India)

Abstract-- Equations of translational-rotational motion of a spheroidal satellite in a photogravitational restricted three body problem have been derived. It is observed that the analysis of Translational-Rotational motion on a spheroidal satellite in their gravitational field assuming that the sun is being perturbed by Photogravitational effect is bound to present realistic picture of the motion.

Keywords-- Translational-Rotational, Photogravitational, Restricted three body.

I. INTRODUCTION

Equations of Translational-Rotational motion of a spheroidal satellite in the gravitational field of two massing bodies having spherical symmetry were derived by Kondurar and Shinkarik (1972) in the case of circular restricted three body problem. The libration points in the generalised restricted three body problem have been investigated by choudhary R.K. (1977). However, they were restricted to the consideration of gravitational effects of the two massing bodies on the spheroidal satellite having infinitesimal mass. Presently most of the satellites are being launched in our solar system and hence the analysis of its motion in sun-planet system is most realistic. The sun being a radiating body, it is worth considering that the more massive primary sun is the source of radiation. Radziesvskii (1950,1953) investigated the restricted three body problem taking into account the light pressure and analysed the location of equilibrium points for the translation motions of a point mass.

\[F = F_g - F_p = F_g \left(1 - \frac{F_p}{F_g} \right) = q F_g \text{ where } q = 1 - \frac{F_p}{F_g} \]

is the mass reduction factor, constant for given particle. Obviously, the effect of the solar radiation pressure is to bring in a perturbation in gravitational attraction force by the constant factor \(q \). This constant factor can be expressed in forms of particle radius \(a \), density \(\delta \) and solar radiation pressure efficiency factor \(k \) (in C.G.S. unit) as:

\[q = 1 - \frac{5.6 \times 10^{-8}}{a \delta} k \]

The sun which is the source of radiation is almost spherical and the planets may be considered to be approximately having spherical structure. The solar radiation pressure changes with the distance by the same law as the gravitational attraction force and acts opposite to it. Hence, it is relevant to consider that the result of action of solar radiation pressure force will lead to reducing the effect mass of the sun. Let \(F_g \) be the gravitational force of the sun and \(F_p \) be the solar radiation pressure force. The sun's resultant force acting on any particle is given by

Assumption that \(q \) is constant amounts to neglecting the solar radiation flood fluctuations and shadow effect of the planet. The constraint \(q \) is positive when the gravitation prevails and negative if radiation pressure prevails. It is further assumed that the effect of radiation is to modify the magnitude of the inverse square law of force of the finite luminous mass acting on the infinitesimal mass, whereas the orbit of the finite masses is unaffected by the radiation pressure.
II. EQUATIONS OF MOTION

Let three bodies M_1, M_2 and M of mass m_1, m_2 and m respectively. Let us assume that m is so small in comparison of m_1 and m_2 that it has no effect on the motions of M_1 and M_2. Further more, assume that m_1, m_2 have a uniform spherical mass distribution so that they behave as point masses with regard to their gravitational effects on other bodies and m_1 the heaviest of the two is the source of radiation.

Finally, let assume that M_1 and M_2 are describing circular orbit about their mass centre in Newtonian reference frame with constant angular velocity n^2 where

$$n^2 = \frac{k^2 (m_1 + m_2)}{R^2} \quad \ldots \ldots \ldots (1)$$

Let us consider right handed rotating barycentre co-ordinate system OXYZ with origin O at the centre of mass O of the finite bodies M_1 and M_2. X' directed along the line joining the masses, Y' axis along the transversal in the rotational plane and rotating with angular velocity n and Z' axis being orthogonal to the orbital plane forming a right handed system.

The position of the centre of mass of the infenitesimal mass m is given by co-ordinate XYZ and radius vectors from m_i to m denoted by $(i = 1, 2)$ respectively. With the view to determine orientation of spheroidal satellite having infinitiesimal mass, let us introduce orbital frame of reference $\xi_i (i = 1, 2, 3)$ with origin G at the centre of mass infenitesimal mass m axis ξ, in radial direction joining O and G, and ξ_2, tangential to the orbit G in its direction of motion and ξ_3 normal to the orbital plane.

Body axes $X_i (i = 1, 2, 3)$ are obtained from axis $\xi_i (i = 1, 2, 3)$ by means of three independent rotations in the following two ways.
Firstly, the rotations in fig. (2) are θ_2 about ξ_2, θ_1 about η_1 and ϕ about ξ_3.

In the second case fig. (3) the rotations are given by familiar Eulerian angles ψ about ξ_3, θ about η_1, and ϕ about ξ_3. The relations between the two axis x_i and ξ_i can be given in terms of direction cosines l_{ij} by the matrix equation.

$$\{x\} = [I] \{a\} \quad(2)$$

Thus the direction cosines between axis x_i and ξ_i have the expressions.

$$l_{11} = C\theta_2 C\phi + S\theta_2 S\phi, S\phi = C\psi C\phi - S\psi C\theta S\phi$$

$$\begin{align}
l_{12} &= C\theta_1 S\phi = S\psi C\phi + C\psi C\theta S\phi \\
l_{13} &= S\theta_2 S\phi + C\theta_2 S\theta_1 S\phi = S\theta S\phi \\
l_{21} &= -C\theta_2 S\phi + S\theta_2 S\phi C\phi = -C\psi S\phi - S\psi C\theta C\phi \\
l_{22} &= C\theta_1 C\phi = -S\psi S\phi + C\psi C\theta C\phi \\
l_{23} &= S\theta_2 S\phi + S\phi + C\theta_2 S\theta_1 C\phi = S\theta C\phi \\
l_{31} &= S\theta_2 C\theta_1 = S\phi S\theta \\
l_{32} &= -S\theta_1 = -C\psi S\phi \\
l_{33} &= C\theta_2 C\theta_1 = C\theta \quad(3)
\end{align}$$

Where $S\theta$ and $C\theta$ denote $Sin\theta$ and $Cos\theta$ respectively.
The satellite being axially symmetric body it is advantageous to work with the axis \(\zeta_1, \zeta_2, \zeta_3 \). The direction cosines between \(\zeta_i \) and \(\zeta_j \) (\(i = 1, 2, 3 \)) are obtained by putting \(\phi = 0 \) in eqns. (3).

The angular velocity components \(\Omega_i \) of the body \(M \) about these axis are:

\[
\Omega_1 = \omega_1; \quad \Omega_2 = \omega_2; \quad \Omega_3 = \omega_3 + \dot{\phi} \quad \text{............... (4)}
\]

where \(\omega_1, \omega_2, \omega_3 \) are angular velocities of the system \(\zeta_i \) (\(i = 1, 2, 3 \)) and are easily obtained as

\[
\begin{align*}
\omega_1 &= -nS\theta_2 + \dot{\theta} \\
\omega_2 &= -nC\theta_2 S\theta_1 + \dot{\theta}_2 C\theta_1 = (n+\psi)S\theta \\
\omega_3 &= -nC\theta_2 C\theta_1 - \dot{\theta}_2 S\theta_1 = (n+\psi)C\theta
\end{align*}
\quad \text{............... (5)}
\]

In the rotating barrence co-ordinate system with generalised co-ordinates \(XYZ, \theta, \phi, \psi \) or \(XYZ, \theta_1, \theta_2, \theta_3 \) the Lagrangian of the problem can be easily written as

\[
T = \frac{1}{2}m \left[(\dot{X} - ny)^2 + (\dot{Y} + nx)^2 + \dot{Z}^2 \right] + \frac{1}{2} \left(\tilde{A} \omega_1^2 + B \omega_2^2 + C \omega_3^2 \right) \quad \text{............... (6)}
\]

The force function \(\tilde{U} \) is given by

\[
\tilde{U} = \tilde{U}_1 + \tilde{U}_2 \quad \text{............... (7)}
\]

where

\[
\begin{align*}
\tilde{U}_1 &= k^2 m m q \left[\frac{1}{R_1} + \frac{\tilde{A} \sigma}{2R_1} \left(1 - 3\gamma_1^2 \right) \right] \quad \text{............... (8)} \\
\tilde{U}_2 &= k^2 m m q \left[\frac{1}{R_2} + \frac{\tilde{A} \sigma}{2R_2} \left(1 - 3\gamma_2^2 \right) \right] \quad \text{............... (9)} \\
\tilde{\sigma} &= \frac{\tilde{C} - \tilde{A}}{A} (-1 \leq \sigma \leq 1) \quad \text{............... (10)}
\end{align*}
\]

Let us use the non-dimensional variables

\[
\frac{m_2}{M} = \mu, \quad \frac{m_1}{M} = 1 - \mu, \quad M = m_1 + m_2
\]

\[
R_1 = Lr_1, \quad R_2 = Lr_2 \quad \text{............... (11)}
\]

\[
x = \frac{X}{L_0}, \quad y = \frac{Y}{L_0}, \quad \tau = \frac{Z}{L_0}
\]

\[
r_1 = \frac{R_1}{L_0}, \quad r_2 = \frac{R_2}{L_0}, \quad \tau = nt
\]
\[x_1 = \frac{X_1}{L_0}, y_1 = \frac{Y_1}{L_0}, n^2 = \frac{k^2 (m_1 + m_2)}{L_0^3} \]

\[\bar{A} = ml_0^2 A, \bar{C} = ml_0^2 C \]

\(L_0 \) being the distance between the primaries and \(A, C \) are non-dimensional forms of moment of inertia of the oblate spheroid, the mass ratio of the small primary to the total mass.

The Lagrangian \(\bar{L} \) is reduced to

\[\bar{L} = \frac{1}{2} \left(\dot{x}^2 + \dot{y}^2 + \dot{z}^2 \right) + (\dot{y} x - \dot{x} y) + \frac{1}{2} \left(x^2 + y^2 \right) + \]

\[+ \frac{1}{2} \left[A \{(S \theta_2 - \dot{\theta}_1)^2 + (C \theta_2 S \theta_1 + \dot{\theta}_2 C \theta_1)^2\} + C \{(C \theta_2 C \theta_1 - \dot{\theta}_2 S \theta_1 + \dot{\phi}^2\}\} \right] + [U_1 + U_2] \]

\[\text{......... (12)} \]

where \(L = \frac{\bar{L}}{m n^2 L_0^2} \), here (.) denotes the differentiation with respect to non-dimensional time \(\tau \).

\[L = \frac{1}{2} \left(\dot{x}^2 + \dot{y}^2 + \dot{z}^2 \right) + (\dot{y} x - \dot{x} y) + \frac{1}{2} \left(x^2 + y^2 \right) + \]

\[\frac{1}{2} \left[A \{(\theta^2 + (1+\psi)^2 S \theta_2) + C \{(1+\psi^2) (\theta + \dot{\phi}^2)\}\} \right] + [U_1 + U_2] \]

\[\text{......... (12')} \]

where

\[U_1 = (1 - \mu) q \left[\frac{1}{r_i} + \frac{A \sigma}{2 r_i^3} (1 - 3 \gamma_i^2) \right] \]

\[U_2 = \mu \left[\frac{1}{r_i} + \frac{A \sigma}{2 r_i^3} (1 - 3 \gamma_i^2) \right] \]

\[\sigma = \frac{C - A}{A} (-1 \leq 6 \leq 1) \]

\[\gamma_i = \frac{1}{r_i} \left[(x - x_i) l_{31} + y l_{32} + z l_{33} \right] \]

\[l_{31} = S \theta_2 C \theta_1 = S \psi S \theta \]

\[l_{32} = -S \theta_1 = -C \psi S \theta \]

\[l_{33} = C \theta_2 C \theta_1 = C \theta \]

\[\mu_1 = 1 - \mu, \mu_2 = \mu, \quad x_1 = \mu, \quad x_2 = \mu - 1, \quad r_1^2 = (x - \mu)^2 + y^2 + z^2 \]

\[r_2^2 = (x - \mu + 1)^2 + y^2 + z^2 \]

\[\gamma_i \text{ being cosine of the angle between the radius vector } r_i \text{ and the axis of symmetry of rotation of the satellite.} \]
III. ROUTHIAN FUNCTION FOR THE PROBLEM

Hence, the corresponding conjugate momenta $\frac{\partial L}{\partial \phi}$ is a constant.

On inspection of the Lagrangian we observed that ϕ is not presents in the Lagrangian and hence it is ignorable co-ordinate.

Thus,

$$\frac{\partial L}{\partial \dot{\phi}} = C\left((1+\psi) C\theta + \dot{\phi} \right) = Cr_2$$

$$= C\left(C\theta_2 C\theta_1 - \dot{\theta}_2 S\theta_1 + \dot{\phi} \right) = Cr_0$$

............... (19)

r_0 being constant.

Hence, we obtain

$$C\theta_2 C\theta_1 - \dot{\theta}_2 S\theta_1 + \dot{\phi} = (1+\psi) C\theta + \dot{\phi} = r_0 \text{ (cons.)}$$

............... (20)

Eliminating ignorable co-ordinate Routhian function R can be easily obtained as

$$R = \left[\frac{1}{2} \left(x^2 + y^2 + \dot{\theta}^2 \right) + \frac{1}{2} \left(\dot{\theta}^2 + \dot{\phi}^2 C\theta^2 \right) \right] + \left[(x\dot{y} - y\dot{x}) + \dot{\phi} \left(A\theta_2 C\theta_2 S\theta_1 - Cr_0 S\theta_1 \right) - A\dot{\theta}_1 S\theta_2 \right]$$

$$+ \left[\frac{1}{2} \left(x^2 + y^2 \right) + \frac{1}{2} A \left(\theta_2^2 + \theta_1^2 C\theta_2^2 \right) + Cr_0 C\theta_1 C\theta_2 - \frac{1}{2} (r_0^2 + U) \right]$$

............... (21)

$$R = \left[\frac{1}{2} \left(x^2 + y^2 + \dot{\theta}^2 \right) + \frac{1}{2} \dot{\theta}^2 + \frac{1}{2} S\theta^2 \dot{\psi}^2 \right] + \left[x\dot{y} - y\dot{x} + A\psi S\dot{\theta}^2 + Cr_0 \dot{\psi} C\theta \right]$$

$$+ \left[\frac{1}{2} \left(x^2 + y^2 \right) + \frac{1}{2} A S\theta^2 + Cr_0 C\theta - \frac{1}{2} Cr_0^2 + U \right]$$

............... (22)

where

$$U = U_1 + U_2$$

Obviously, the original system having six degrees of freedoms have been reduced to a problem with five degrees of freedom. The sixth co-ordinate and its derivative is obtained by quadrature with the help of the equation. (19).

$$H = -R + \sum \frac{\partial R}{\partial \dot{q}_i} = T_2 - T_0 - U$$

............... (23)

As R does not contain time τ, the Jocobi's integral

$$H = T_2 - T_0 - U = h$$

............... (24)
Exists for the problem. Hence Jacobi's integral is given by

$$\frac{1}{2}(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) + \frac{1}{2}\left(\ddot{\theta}^2 + C\ddot{\phi}^2\right) - \frac{1}{2}A\left(S\dot{\theta}^2 + S\theta^2C\dot{\phi}^2\right) - Cr_0C\theta_1\theta_2 - \frac{1}{2}(x^2 + y^2) - U + \frac{1}{2}Cr_0^2 = h$$

................ (25)

$$\Rightarrow \frac{1}{2}(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) + \frac{1}{2}A(\dot{\theta}^2 + \psi S\theta^2) - \frac{1}{2}(x^2 + y^2) - \frac{1}{2}AS\theta^2 - Cr_0C\theta - U + \frac{1}{2}Cr_0^2 = h$$

............... (26)

This can be put in the form

$$T_2 + \nu = h$$

............... (27)

where \(\nu\) is the reduced potential energy given by

$$\nu = -\frac{1}{2}(x^2 + y^2) - \frac{1}{2}A\left(S\dot{\theta}^2 + S\theta^2C\dot{\phi}^2\right) - Cr_0C\theta_1\theta_2 - U + \frac{1}{2}Cr_0^2$$

............... (28)

$$\nu = -\frac{1}{2}(x^2 + y^2) - \frac{1}{2}AS\theta^2 - Cr_0C\theta - U + \frac{1}{2}Cr_0^2$$

............... (29)

It is not difficult to obtain the equations of motion of the system in the following form:

$$\ddot{x} = \frac{\partial \nu}{\partial x}$$

$$\ddot{y} = \frac{\partial \nu}{\partial y}$$

$$\ddot{z} = \frac{\partial \nu}{\partial z}$$

............... (30)

$$A\ddot{\theta} - A(\dot{\phi}^2 + 2\psi)S\theta C\theta + \dot{\psi}C\theta_1S\theta = -\frac{\partial \nu}{\partial \theta}$$

$$AS\ddot{\phi} + 2(\psi + 1)\dot{\theta}AS\theta\theta - Cr_0\dot{\theta}\theta = -\frac{\partial \nu}{\partial \psi}$$

or

$$A\ddot{\theta}_1 + A\ddot{\phi}_2 S\theta_1 C\theta_1 - 2A\dot{\theta}_2 C\theta_2 C\theta_1^2 + Cr_0\dot{\theta}_2 C\theta_1 = -\frac{\partial \nu}{\partial \theta_1}$$

$$AC\theta_1^2 \ddot{\phi}_2 - 2A\dot{\theta}_1 \dot{\phi}_2 S\theta_1 C\theta_1 + 2A\ddot{\phi}_1 C\theta_1^2 C\theta_2 - Cr_0 \dot{\phi}_1 C\theta_1 = -\frac{\partial \nu}{\partial \theta_2}$$

where

$$\nu = -\frac{1}{2}(x^2 + y^2) - \frac{1}{2}\left(S\dot{\theta}^2 + S\theta^2C\dot{\phi}^2\right) - Cr_0C\theta_1\theta_2 - U + \frac{1}{2}Cr_0^2$$

$$= -\frac{1}{2}(x^2 + y^2) - \frac{1}{2}AS\theta^2 - Cr_0C\theta - U + \frac{1}{2}Cr_0^2$$
Acknowledgement

The authors wishes to express his deep sense of gratitude to Dr. Manaziruddin, Department of Mathematics, Dr. J. Mishra College, Muzaffarpur, B.R.A.Bihar University, Muzaffarpur for their valuable suggestions during the work. My sincere thanks are also to my colleague Dr. U.K.Srivastava (D.Sc.), Department of Mathematics, R.S.S.College, Chochahan, B.R.A.Bihar University, Muzaffarpur who encouraged me during the period.

REFERENCES

