A Fixed Point Theorems for Soft Contractive Mapping by Using Altering Distance Function

Mahesh Tiwari1, Ramakanth Bhardwaj 2, Basant Kumar Singh3, Sunil Garge4

1,3Department Of Mathematics, RNT University, Bhopal (M.P.)
2Technocrats Institute of Technology, Bhopal, M.P., India
4Senior Scientific Officer, MPCST Bhopal

\textbf{ABSTRACT}

In the present paper, we prove some fixed point theorem in complete soft metric spaces by using altering distance function.

\textbf{Keywords:} - Soft metric space, soft contractive mapping, fixed point, altering distance function.

\textbf{Mathematics Subject Classification:} - 47H10, 54H25.

\section{1. INTRODUCTION & PRELIMINARIES}

A new category of contractive fixed point problem was introduced by M. S. Khan, M. Swalech and S. Sessa [9]. In this work, they introduced the concept of altering distance function which is a control function that alters distance between two points in a metric space.

In the year 1999, Molodtsov [13] initiated a novel concept of soft sets theory as a new mathematical tool for dealing with uncertainties. A soft set is a collection of approximate descriptions of an object. Soft systems provide a very general framework with the involvement of parameters. Since soft set theory has a rich potential, applications of soft set theory in other disciplines and real life problems are progressing rapidly.

Maji et al. [10,11] worked on soft set theory and presented an application of soft sets in decision making problems. Chen [3] introduced a new definition of soft set parameterization reduction and a comparison of it with attribute reduction in rough set theory. Many researchers contributed towards many structure on soft set theory. [1, 3].

M. Shabir and M. Naz [14] presented soft topological spaces and they investigated some properties of soft topological spaces. Later, many researches about soft topological spaces were studied in [2,6,7,12,14]. In these studies, the concept of soft point is expressed by different approaches. In the study we use the concept of soft point which was given in [2,4].

\textbf{Definition 2.1}: Let X be an initial universe set and E be a set of parameters. A pair (F, E) is called a soft set over X if and only if X is a mapping from E into the set of all subsets of the set X, i.e. $F: E \rightarrow P(X)$, where $P(X)$ is the power set of X.

\textbf{Definition 2.2}: The intersection of two soft sets (F, A) and (G, B) over X is the soft set (H, C), where $C = A \cap B$ and $\forall \epsilon \in C, H(\epsilon) = F(\epsilon) \cap G(\epsilon)$. This is denoted by $(F, A) \cap (G, B) = (H, C)$.

436
Definition 2.3: The union of two soft sets \((F, A)\) and \((G, B)\) over \(X\) is the soft set, where \(C = A \cup B\) and \(\forall \varepsilon \in C\),

\[
H(\varepsilon) = \begin{cases}
F(\varepsilon), & \text{if } \varepsilon \in A - B \\
G(\varepsilon), & \text{if } \varepsilon \in B - A \\
F(\varepsilon) \cup G(\varepsilon), & \varepsilon \in A \cap B
\end{cases}
\]

This relationship is denoted by \((F, A) \cup (G, B) = (H, C) \).

Definition 2.4: The soft set \((F, A)\) over \(X\) is said to be a null soft set denoted by \(\Phi\) if for all \(\varepsilon \in A, F(\varepsilon) = \phi\) (null set).

Definition 2.5: A soft set \((F, A)\) over \(X\) is said to be an absolute soft set, if for all \(\varepsilon \in A, F(\varepsilon) = X\).

Definition 2.6: The difference \((H, E)\) of two soft sets \((H, E)\) and \((H, E)\) over \(X\) denoted by \((H, E) \setminus (H, E)\), is defined as \(H(e) = F(e) \setminus G(e)\) for all \(e \in E\).

Definition 2.7: The complement of a soft set \((F, A)\) is denoted by \((F, A)^c\) and is defined by \((F, A)^c = (F^c, A)\) where \(F^c: A \to P(X)\) is mapping given by \(F^c(\alpha) = X - F(\alpha), \forall \alpha \in A\).

Definition 2.8: Let \(\mathcal{R}\) be the set of real numbers and \(B(\mathcal{R})\) be the collection of all nonempty bounded subsets of \(\mathcal{R}\) and \(E\) taken as a set of parameters. Then a mapping \(F: E \to B(\mathcal{R})\) is called a soft real set. It is denoted by \((F, E)\). If specifically \((F, E)\) is a singleton soft set, then identifying \((F, E)\) with the corresponding soft element, it will be called a soft real number and denoted \(\tilde{r}, \tilde{s}, \tilde{t}\) etc.

\(\tilde{0}, \tilde{1}\) are the soft real numbers where \(\tilde{0}(e) = 0, \tilde{1}(e) = 1\) for all \(e \in E\), respectively.

Definition 2.9: For two soft real numbers

(i) \(\tilde{r} \leq \tilde{s}\), if \(\tilde{r}(e) \leq \tilde{s}(e)\), for all \(e \in E\).

(ii) \(\tilde{r} \geq \tilde{s}\), if \(\tilde{r}(e) \geq \tilde{s}(e)\), for all \(e \in E\).

(iii) \(\tilde{r} < \tilde{s}\), if \(\tilde{r}(e) < \tilde{s}(e)\), for all \(e \in E\).

(iv) \(\tilde{r} > \tilde{s}\), if \(\tilde{r}(e) > \tilde{s}(e)\), for all \(e \in E\).
Definition 2.10: A soft set over X is said to be a soft point if there is exactly one $e \in E$, such that $P(e) = \{x\}$ for some $x \in X$ and $P(e') = \emptyset, \forall e' \in E\{e\}$. It will be denoted by \tilde{x}_e.

Definition 2.11: Two soft points \tilde{x}_e, \tilde{y}_e are said to be equal if $e = e'$ and $P(e) = P(e')$ i.e. $x = y$. Thus $\tilde{x}_e \neq \tilde{y}_e \iff x \neq y$ or $e \neq e'$.

Definition 2.12: A mapping $\tilde{d}: SP(\tilde{X}) \times SP(\tilde{X}) \to \mathbb{R}(E)^*$, is said to be a soft metric on the soft set \tilde{X} if d satisfies the following conditions:

\begin{align*}
\text{(M1)} & \quad \tilde{d}(\tilde{x}_{e_1}, \tilde{y}_{e_2}) \leq \tilde{0} \text{ for all } \tilde{x}_{e_1}, \tilde{y}_{e_2} \in \tilde{X}, \\
\text{(M2)} & \quad \tilde{d}(\tilde{x}_{e_1}, \tilde{y}_{e_2}) = \tilde{0} \text{ if and only if } \tilde{x}_{e_1} = \tilde{y}_{e_2}, \\
\text{(M3)} & \quad \tilde{d}(\tilde{x}_{e_1}, \tilde{y}_{e_2}) \leq \tilde{d}(\tilde{y}_{e_2}, \tilde{x}_{e_1}) \text{ for all } \tilde{x}_{e_1}, \tilde{y}_{e_2} \in \tilde{X}, \\
\text{(M4)} & \quad \tilde{d}(\tilde{x}_{e_1}, \tilde{z}_{e_3}) \leq \tilde{d}(\tilde{x}_{e_1}, \tilde{y}_{e_2}) + \tilde{d}(\tilde{y}_{e_2}, \tilde{z}_{e_3}) \text{ for all } \tilde{x}_{e_1}, \tilde{y}_{e_2}, \tilde{z}_{e_3} \in \tilde{X}.
\end{align*}

The soft set \tilde{X} with a soft metric \tilde{d} on \tilde{X} is called a soft metric space and denoted by $(\tilde{X}, \tilde{d}, E)$.

Definition 2.13 (Cauchy Sequence): A sequence $\{\tilde{x}_{\lambda,n}\}_n$ of soft points in $(\tilde{X}, \tilde{d}, E)$ is considered as a Cauchy sequence in \tilde{X} if corresponding to every $\tilde{\epsilon} \geq \tilde{0}, \exists m \in N$ such that $\tilde{d}(\tilde{x}_{\lambda,i}, \tilde{x}_{\lambda,j}) \leq \tilde{\epsilon}, \forall i, j \geq m$, i.e. $d(\tilde{x}_{\lambda,i}, \tilde{x}_{\lambda,j}) \to \tilde{0}$ as $i, j \to \infty$.

Definition 2.14 (Soft Complete Metric Space): A soft metric space $(\tilde{X}, \tilde{d}, E)$ is called complete, if every Cauchy Sequence in \tilde{X} converges to some point of \tilde{X}.

Definition 2.15: Let $(\tilde{X}, \tilde{d}, E)$ be a soft metric space. A function $(f, \varphi) : (\tilde{X}, \tilde{d}, E) \to (\tilde{X}, \tilde{d}, E)$ is called a soft contractive mapping if there exist a soft real number $\alpha \in R, 0 \leq \alpha < 1$ such that for every point $\tilde{x}_{\lambda}, \tilde{y}_{\mu} \in SP(\tilde{X})$ we have

\[\tilde{d}((f, \varphi)(\tilde{x}_{\lambda}), (f, \varphi)(\tilde{y}_{\mu})) \leq \alpha \tilde{d}(\tilde{x}_{\lambda}, \tilde{y}_{\mu}) \]

Definition 2.16[9]: The function $\psi : [0, \infty) \to [0, \infty)$ is called an altering distance function if the following properties are satisfied:

(i) ψ is continuous and non-decreasing,
(ii) $\psi(t) = 0$ if and only if $t = 0$.

3. MAIN RESULTS

Theorem 3.1: Let \((\bar{X}, \tilde{d}, E)\) be a soft complete metric space. Suppose the soft mapping \((f, \varphi) : (\bar{X}, \tilde{d}, E) \rightarrow (\bar{X}, \tilde{d}, E)\) satisfies the soft contractive condition:

\[
\psi \left[\tilde{d} \left((f, \varphi)(\bar{x}_\lambda), (f, \varphi)(\bar{y}_\mu) \right) \right] \leq \psi \left[\tilde{M}(\bar{x}_\lambda, \bar{y}_\mu) \right] \quad \text{for each} \quad \bar{x}_\lambda, \bar{y}_\mu \in \bar{X}, \bar{x}_\lambda \neq \bar{y}_\mu,
\]

where \(\psi, \varphi\) are altering distance functions, and

\[
\tilde{M}(\bar{x}_\lambda, \bar{y}_\mu) = \alpha \left(\frac{\tilde{d}(\bar{x}_\lambda, (f, \varphi)(\bar{x}_\lambda)) + \tilde{d}(\bar{y}_\mu, (f, \varphi)(\bar{y}_\mu))}{1 + \tilde{d}(\bar{x}_\lambda, (f, \varphi)(\bar{x}_\lambda)) + \tilde{d}(\bar{y}_\mu, (f, \varphi)(\bar{y}_\mu))} \right) + \beta \left(\frac{\tilde{d}(\bar{x}_\lambda, (f, \varphi)(\bar{x}_\lambda)) + \tilde{d}(\bar{y}_\mu, (f, \varphi)(\bar{y}_\mu))}{1 + \tilde{d}(\bar{x}_\lambda, (f, \varphi)(\bar{x}_\lambda)) + \tilde{d}(\bar{y}_\mu, (f, \varphi)(\bar{y}_\mu))} \right) + \gamma \left(\tilde{d}(\bar{x}_\lambda, \bar{y}_\mu) \right) \quad \text{for each} \quad \bar{x}_\lambda, \bar{y}_\mu \in \bar{X}, \bar{x}_\lambda \neq \bar{y}_\mu.
\]

For each \(\bar{x}_\lambda, \bar{y}_\mu \in \bar{X}, \bar{x}_\lambda \neq \bar{y}_\mu\), where \(\psi, \varphi\) are altering distance functions, and

\[
\tilde{M}(\bar{x}_\lambda, \bar{y}_\mu) = \alpha \left(\frac{\tilde{d}(\bar{x}_\lambda, (f, \varphi)(\bar{x}_\lambda)) + \tilde{d}(\bar{y}_\mu, (f, \varphi)(\bar{y}_\mu))}{1 + \tilde{d}(\bar{x}_\lambda, (f, \varphi)(\bar{x}_\lambda)) + \tilde{d}(\bar{y}_\mu, (f, \varphi)(\bar{y}_\mu))} \right) + \beta \left(\frac{\tilde{d}(\bar{x}_\lambda, (f, \varphi)(\bar{x}_\lambda)) + \tilde{d}(\bar{y}_\mu, (f, \varphi)(\bar{y}_\mu))}{1 + \tilde{d}(\bar{x}_\lambda, (f, \varphi)(\bar{x}_\lambda)) + \tilde{d}(\bar{y}_\mu, (f, \varphi)(\bar{y}_\mu))} \right) + \gamma \left(\tilde{d}(\bar{x}_\lambda, \bar{y}_\mu) \right) \quad \text{for each} \quad \bar{x}_\lambda, \bar{y}_\mu \in \bar{X}, \bar{x}_\lambda \neq \bar{y}_\mu.
\]

Where \(\alpha, \beta, \gamma > 0\) and \(2\alpha + 2\beta + \gamma < 1\) is a soft constant. Then \((f, \varphi)\) has a unique fixed point in \(\bar{X}\).

Proof: Let \(\bar{x}_\lambda^0\) be any soft point in \(SP(X)\).

Set

\[
\bar{x}_\lambda^1 = (f, \varphi)(\bar{x}_\lambda^0) = (f(\bar{x}_\lambda^0))_{\varphi(\lambda)}
\]

\[
\bar{x}_\lambda^2 = (f, \varphi)(\bar{x}_\lambda^1) = (f^2(\bar{x}_\lambda^0))_{\varphi^2(\lambda)}
\]

\[
\vdots
\]

\[
\bar{x}_\lambda^{n+1} = (f, \varphi)(\bar{x}_\lambda^n) = \left(f^{n+1}(\bar{x}_\lambda^0) \right)_{\varphi^{n+1}(\lambda)}, \ldots
\]

Now consider, from (3.1.2) we have

\[
\tilde{M}(\bar{x}_\lambda^{n-1}, \bar{x}_\lambda^n) = \alpha \left(\frac{\tilde{d}(\bar{x}_\lambda^{n-1}, (f, \varphi)(\bar{x}_\lambda^{n-1})) + \tilde{d}(\bar{x}_\lambda^n, (f, \varphi)(\bar{x}_\lambda^n))}{1 + \tilde{d}(\bar{x}_\lambda^{n-1}, (f, \varphi)(\bar{x}_\lambda^{n-1})) + \tilde{d}(\bar{x}_\lambda^n, (f, \varphi)(\bar{x}_\lambda^n))} \right) + \beta \left(\frac{\tilde{d}(\bar{x}_\lambda^{n-1}, (f, \varphi)(\bar{x}_\lambda^{n-1})) + \tilde{d}(\bar{x}_\lambda^n, (f, \varphi)(\bar{x}_\lambda^n))}{1 + \tilde{d}(\bar{x}_\lambda^{n-1}, (f, \varphi)(\bar{x}_\lambda^{n-1})) + \tilde{d}(\bar{x}_\lambda^n, (f, \varphi)(\bar{x}_\lambda^n))} \right) + \gamma \left(\tilde{d}(\bar{x}_\lambda^{n-1}, \bar{x}_\lambda^n) \right)
\]

\[
= \alpha \left(\frac{\tilde{d}(\bar{x}_\lambda^{n-1}, \bar{x}_\lambda^n) + \tilde{d}(\bar{x}_\lambda^n, \bar{x}_\lambda^{n+1})}{1 + \tilde{d}(\bar{x}_\lambda^{n-1}, \bar{x}_\lambda^n) + \tilde{d}(\bar{x}_\lambda^n, \bar{x}_\lambda^{n+1})} \right)
\]
From (3.1.1) we have

\[
\begin{align*}
\psi[d(\bar{x}_n^0, \bar{x}_{n+1}^0)] &= \psi\left[d\left((f_0, \varphi)(\bar{x}^n_{\alpha_{n-1}}), (f, \varphi)(\bar{x}^n_\alpha)\right]\right] \\
&\leq \psi\left[\varphi(\bar{x}^n_{\alpha_{n-1}}) - \varphi(\bar{x}^n_\alpha)\right] \\
&\leq \psi\left[\alpha + \beta + \gamma\right] d(\bar{x}^n_{\alpha_{n-1}}, \bar{x}^n_\alpha) + (\alpha + \beta) \varphi(\bar{x}^n_\alpha) \\
&\leq \psi\left[\alpha + \beta + \gamma\right] d(\bar{x}^n_{\alpha_{n-1}}, \bar{x}^n_\alpha) + (\alpha + \beta) \varphi(\bar{x}^n_\alpha) \\
&\leq \psi\left[\alpha + \beta + \gamma\right] d(\bar{x}^n_{\alpha_{n-1}}, \bar{x}^n_\alpha) + (\alpha + \beta) \varphi(\bar{x}^n_\alpha)
\end{align*}
\]

Since \(\psi\) is non-decreasing, we have

\[
\begin{align*}
d(\bar{x}^n_{\alpha_{n-1}}, \bar{x}^n_\alpha) &\leq (\alpha + \beta + \gamma) d(\bar{x}^{n-1}_{\alpha_{n-1}}, \bar{x}^n_\alpha) + (\alpha + \beta) d(\bar{x}^n_\alpha, \bar{x}^{n+1}_\alpha) \\
\tilde{d}(\bar{x}^n_{\alpha_{n-1}}, \bar{x}^n_\alpha) &\leq \frac{\alpha + \beta + \gamma}{(1-\alpha - \beta)} d(\bar{x}^{n-1}_{\alpha_{n-1}}, \bar{x}^n_\alpha) \\
\tilde{d}(\bar{x}^n_{\alpha_{n-1}}, \bar{x}^n_\alpha) &\leq h \tilde{d}(\bar{x}^{n-1}_{\alpha_{n-1}}, \bar{x}^n_\alpha) \\
\end{align*}
\]

Where \(h = \frac{\alpha + \beta + \gamma}{1-\alpha - \beta}\)

Thus \(\tilde{d}(\bar{x}^n_{\alpha_{n-1}}, \bar{x}^n_\alpha) \leq h^n \tilde{d}(\bar{x}^0_{\alpha_0}, \bar{x}^1_\alpha)\)

Taking \(n \to \infty\), we have

\[
\lim_{n \to \infty} \tilde{d}(\bar{x}^n_{\alpha_{n-1}}, \bar{x}^n_\alpha) = 0 \quad \text{...(3.1.3)}
\]
Now, we will show that \(\{\tilde{x}^n_{\lambda_n}\} \) is a soft Cauchy sequence. Suppose that \(\{\tilde{x}^n_{\lambda_m}\} \) is not a Soft Cauchy sequence, which means that there is a constant \(\epsilon_0 > 0 \) such that for each positive integer \(k \), there are positive integer \(\lambda_{m(k)} \) and \(\lambda_{n(k)} \) with \(\lambda_{m(k)} > \lambda_{n(k)} > k \) such that

\[
\tilde{d}\left(\tilde{x}^{m(k)}_{\lambda_{m(k)}}, \tilde{x}^{n(k)}_{\lambda_{n(k)}}\right) \geq \epsilon_0, \quad \tilde{d}\left(\tilde{x}^{m(k)}_{\lambda_{m(k)}}, \tilde{x}^{n(k)}_{\lambda_{n(k)}}\right) < \epsilon_0
\]

By triangle inequality

\[
\epsilon_0 \leq \tilde{d}\left(\tilde{x}^{m(k)}_{\lambda_{m(k)}}, \tilde{x}^{n(k)}_{\lambda_{n(k)}}\right) \leq \tilde{d}\left(\tilde{x}^{m(k)}_{\lambda_{m(k)}}, \tilde{x}^{m(k)-1}_{\lambda_{m(k)}}\right) + \tilde{d}\left(\tilde{x}^{m(k)-1}_{\lambda_{m(k)}}, \tilde{x}^{n(k)}_{\lambda_{n(k)}}\right) < \tilde{d}\left(\tilde{x}^{m(k)}_{\lambda_{m(k)}}, \tilde{x}^{m(k)-1}_{\lambda_{m(k)}}\right) + \epsilon_0
\]

Letting \(k \to \infty \) and using (3.1.3), we have

\[
\lim_{k \to \infty} \tilde{d}\left(\tilde{x}^{m(k)}_{\lambda_{m(k)}}, \tilde{x}^{n(k)}_{\lambda_{n(k)}}\right) = \epsilon_0 \quad \cdots (3.1.4)
\]

Similarly, we have

\[
\lim_{n \to \infty} \tilde{d}\left(\tilde{x}^{m(k)}_{\lambda_{m(k)}}, \tilde{x}^{n(k)+1}_{\lambda_{n(k)+1}}\right) = \epsilon_0, \quad \lim_{n \to \infty} \tilde{d}\left(\tilde{x}^{m(k)+1}_{\lambda_{m(k)+1}}, \tilde{x}^{n(k)}_{\lambda_{n(k)}}\right) = \epsilon_0, \quad \lim_{n \to \infty} \tilde{d}\left(\tilde{x}^{m(k)+1}_{\lambda_{m(k)+1}}, \tilde{x}^{n(k)+1}_{\lambda_{n(k)+1}}\right) = \epsilon_0. \quad \cdots (3.1.5)
\]

Putting \(\tilde{x}_\lambda = \tilde{x}^{m(k)}_{\lambda_{m(k)}} \) and \(\tilde{y}_\mu = \tilde{x}^{n(k)}_{\lambda_{n(k)}} \) in (3.1.2) we have

\[
\tilde{M}\left(\tilde{x}^{m(k)}_{\lambda_{m(k)}}, \tilde{x}^{n(k)}_{\lambda_{n(k)}}\right) = \alpha \frac{\tilde{d}\left(\tilde{x}^{m(k)}_{\lambda_{m(k)}}, \tilde{x}^{n(k)}_{\lambda_{n(k)}}\right)}{1 + \tilde{d}^2}\left(\tilde{x}^{m(k)}_{\lambda_{m(k)}}, \tilde{x}^{m(k)}_{\lambda_{m(k)}}\right) + \beta \frac{\tilde{d}\left(\tilde{x}^{n(k)}_{\lambda_{n(k)}}, \tilde{x}^{n(k)}_{\lambda_{n(k)}}\right)}{1 + \tilde{d}^2}\left(\tilde{x}^{n(k)}_{\lambda_{n(k)}}, \tilde{x}^{m(k)}_{\lambda_{m(k)}}\right) + \gamma \left(\tilde{d}\left(\tilde{x}^{m(k)}_{\lambda_{m(k)}}, \tilde{x}^{n(k)}_{\lambda_{n(k)}}\right)\right)
\]

\[
\tilde{M}\left(\tilde{x}^{m(k)}_{\lambda_{m(k)}}, \tilde{x}^{n(k)}_{\lambda_{n(k)}}\right) = \alpha \frac{\tilde{d}\left(\tilde{x}^{m(k)+1}_{\lambda_{m(k)+1}}, \tilde{x}^{n(k)+1}_{\lambda_{n(k)+1}}\right)}{1 + \tilde{d}^2}\left(\tilde{x}^{m(k)+1}_{\lambda_{m(k)+1}}, \tilde{x}^{m(k)+1}_{\lambda_{m(k)+1}}\right) + \beta \frac{\tilde{d}\left(\tilde{x}^{n(k)+1}_{\lambda_{n(k)+1}}, \tilde{x}^{n(k)+1}_{\lambda_{n(k)+1}}\right)}{1 + \tilde{d}^2}\left(\tilde{x}^{n(k)+1}_{\lambda_{n(k)+1}}, \tilde{x}^{m(k)+1}_{\lambda_{m(k)+1}}\right) + \gamma \left(\tilde{d}\left(\tilde{x}^{m(k)+1}_{\lambda_{m(k)+1}}, \tilde{x}^{n(k)+1}_{\lambda_{n(k)+1}}\right)\right)
\]
Letting \(k \to \infty \) and using (3.1.3), (3.1.4) and (3.1.5), we have

\[
\lim_{k \to \infty} \tilde{M}(\tilde{x}^m(k), \tilde{x}^n(k)) = (\beta + \gamma)\varepsilon_0 \quad \ldots (3.1.6)
\]

From (3.1.1) we have

\[
\psi \left[\tilde{d} \left(\tilde{x}^m(k+1), \tilde{x}^n(k+1) \right) \right] = \psi \left[\tilde{d} \left(f, \varphi \right) \left(\tilde{x}^m(k), \tilde{x}^n(k) \right) \right]
\leq \psi \left[\tilde{M} \left(\tilde{x}^m(k), \tilde{x}^n(k) \right) \right] - \varphi \left[\tilde{M} \left(\tilde{x}^m(k), \tilde{x}^n(k) \right) \right]
\]

Taking \(k \to \infty \), using (3.1.5), (3.1.6) and the continuity of \(\psi \) and \(\varphi \), we have

\[
\psi[\varepsilon_0] \leq \psi[(\beta + \gamma)\varepsilon_0] - \varphi[(\beta + \gamma)\varepsilon_0]
\leq \psi[\varepsilon_0] - \varphi[(\beta + \gamma)\varepsilon_0]
\]

This leads to \(\varphi[(\beta + \gamma)\varepsilon_0] = 0 \), and property of \(\varphi \) we get \(\varepsilon_0 = 0 \).

This is a contradiction. Thus \(\{\tilde{x}^n_\lambda\} \) is a soft Cauchy sequence in \(\tilde{X} \), which is complete. Thus, there is \(\tilde{x}_\lambda^* \in \tilde{X} \) such that \(\tilde{x}^n_\lambda \to \tilde{x}_\lambda^* \), \(n \to \infty \). \quad \ldots (3.1.6)

Putting \(\tilde{x}_\lambda = \tilde{x}^n_\lambda \) and \(\tilde{y}_\mu = \tilde{x}_\lambda^* \) in (3.1.2) we have

\[
\tilde{M} \left(\tilde{x}^n_\lambda, \tilde{x}_\lambda^* \right) = \alpha \left\{ \frac{\tilde{d} \left(\tilde{x}^n_\lambda(f, \varphi)(\tilde{x}^n_\lambda) \right) + \tilde{d} \left(\tilde{x}_\lambda^*(f, \varphi)(\tilde{x}_\lambda^*) \right)}{1 + \tilde{d} \left(\tilde{x}^n_\lambda(f, \varphi)(\tilde{x}_\lambda^*) \right) + \tilde{d} \left(\tilde{x}_\lambda^*(f, \varphi)(\tilde{x}_\lambda^*) \right)} \right\}
\leq \alpha \left\{ \frac{\tilde{d} \left(\tilde{x}^n_\lambda(f, \varphi)(\tilde{x}^n_\lambda) \right) + \tilde{d} \left(\tilde{x}_\lambda^*(f, \varphi)(\tilde{x}_\lambda^*) \right)}{1 + \tilde{d} \left(\tilde{x}^n_\lambda(f, \varphi)(\tilde{x}_\lambda^*) \right) + \tilde{d} \left(\tilde{x}_\lambda^*(f, \varphi)(\tilde{x}_\lambda^*) \right)} \right\} + \beta \left\{ \frac{\tilde{d} \left(\tilde{x}^n_\lambda(f, \varphi)(\tilde{x}_\lambda^*) \right) + \tilde{d} \left(\tilde{x}_\lambda^*(f, \varphi)(\tilde{x}_\lambda^*) \right)}{1 + \tilde{d} \left(\tilde{x}^n_\lambda(f, \varphi)(\tilde{x}_\lambda^*) \right) + \tilde{d} \left(\tilde{x}_\lambda^*(f, \varphi)(\tilde{x}_\lambda^*) \right)} \right\} + \gamma \{\tilde{d}(\tilde{x}^n_\lambda, \tilde{x}_\lambda^*)\}
\]

Taking \(n \to \infty \) and using (3.1.3) and (3.1.6) we have

\[
\lim_{n \to \infty} \tilde{M} \left(\tilde{x}^n_\lambda, \tilde{x}_\lambda^* \right) \leq (\alpha + \beta)\{\tilde{d}(\tilde{x}_\lambda^*, (f, \varphi)(\tilde{x}_\lambda^*))\}
\]

From (3.1.1) we have

\[
\psi \left[\tilde{d} \left(\tilde{x}^{n+1}_\lambda, (f, \varphi)(\tilde{x}_\lambda^*) \right) \right] = \psi \left[\tilde{d} \left((f, \varphi)(\tilde{x}^n_\lambda), (f, \varphi)(\tilde{x}_\lambda^*) \right) \right]
\]
Which implies
\[\psi [\bar{d}(\bar{x}_\lambda^*, (f, \varphi)(\bar{x}_\lambda^*))] \leq \psi [(\alpha + \beta)\{\bar{d}(\bar{x}_\lambda^*, (f, \varphi)(\bar{x}_\lambda^*))\}] - \varphi[(\alpha + \beta)\{\bar{d}(\bar{x}_\lambda^*, (f, \varphi)(\bar{x}_\lambda^*))\}]
\]
\[\psi [\bar{d}(\bar{x}_\lambda^*, (f, \varphi)(\bar{x}_\lambda^*))] \leq \psi [\bar{d}(\bar{x}_\lambda^*, (f, \varphi)(\bar{x}_\lambda^*))] - \varphi[(\alpha + \beta)\{\bar{d}(\bar{x}_\lambda^*, (f, \varphi)(\bar{x}_\lambda^*))\}]
\]

Which implies \(\varphi[(\alpha + \beta)\{\bar{d}(\bar{x}_\lambda^*, (f, \varphi)(\bar{x}_\lambda^*))\}] = 0, \)

So \(\bar{d}(\bar{x}_\lambda^*, (f, \varphi)(\bar{x}_\lambda^*)) = 0, \) that is \((f, \varphi)(\bar{x}_\lambda^*) = \bar{x}_\lambda^*.\)

Uniqueness: Let \(\bar{y}_\mu^* \) is another fixed point of \((f, \varphi)\) in \(\bar{X} \) such that \(\bar{x}_\lambda^* \neq \bar{y}_\mu^* \), then we have

Putting \(\bar{x}_\lambda = \bar{x}_\lambda^* \) and \(\bar{y}_\mu = \bar{y}_\mu^* \) in (3.1.2) we have

\[\tilde{M} (\bar{x}_\lambda^*, \bar{y}_\mu^*) = \alpha \left\{ \frac{\bar{d}^2(\bar{x}_\lambda^*, (f, \varphi)(\bar{x}_\lambda^*)) + \bar{d}^2(\bar{y}_\mu^*, (f, \varphi)(\bar{y}_\mu^*))}{1 + \bar{d}^2(\bar{x}_\lambda^*, (f, \varphi)(\bar{x}_\lambda^*)) + \bar{d}^2(\bar{y}_\mu^*, (f, \varphi)(\bar{y}_\mu^*))} \right\} + \beta \left\{ \frac{\bar{d}^2(\bar{x}_\lambda^*, (f, \varphi)(\bar{y}_\mu^*)) + \bar{d}^2(\bar{y}_\mu^*, (f, \varphi)(\bar{x}_\lambda^*))}{1 + \bar{d}^2(\bar{x}_\lambda^*, (f, \varphi)(\bar{x}_\lambda^*)) + \bar{d}^2(\bar{y}_\mu^*, (f, \varphi)(\bar{y}_\mu^*))} \right\} + \gamma \{\bar{d}(\bar{x}_\lambda^*, \bar{y}_\mu^*)\}
\]

\[\tilde{M} (\bar{x}_\lambda^*, \bar{y}_\mu^*) \leq (\beta + \gamma)\bar{d}(\bar{x}_\lambda^*, \bar{y}_\mu^*)
\]

From (3.1.1) we have

\[\psi [\bar{d}(\bar{x}_\lambda^*, \bar{y}_\mu^*)] = \psi [\bar{d}(\bar{x}_\lambda^*, (f, \varphi)(\bar{x}_\lambda^*), (f, \varphi)(\bar{y}_\mu^*))]
\]

\[\leq \psi [\tilde{M}(\bar{x}_\lambda^*, \bar{y}_\mu^*]) - \varphi[\tilde{M}(\bar{x}_\lambda^*, \bar{y}_\mu^*)]
\]

\[\leq \psi [(\beta + \gamma)\bar{d}(\bar{x}_\lambda^*, \bar{y}_\mu^*)] - \varphi[(\beta + \gamma)\bar{d}(\bar{x}_\lambda^*, \bar{y}_\mu^*)]
\]

\[\psi [\bar{d}(\bar{x}_\lambda^*, \bar{y}_\mu^*)] \leq \psi [\bar{d}(\bar{x}_\lambda^*, \bar{y}_\mu^*)] - \varphi[(\beta + \gamma)\bar{d}(\bar{x}_\lambda^*, \bar{y}_\mu^*)]
\]

So \(\varphi[(\beta + \gamma)\bar{d}(\bar{x}_\lambda^*, \bar{y}_\mu^*)] = 0, \) thus \(\bar{d}(\bar{x}_\lambda^*, \bar{y}_\mu^*) = 0, \) that is \(\bar{x}_\lambda^* = \bar{y}_\mu^*.\)

Hence fixed point of \((f, \varphi)\) is unique.

Corollary 3.2: Let \((\bar{X}, \bar{d}, E)\) be a soft complete metric space. Suppose the soft mapping \((f, \varphi): (\bar{X}, \bar{d}, E) \rightarrow (\bar{X}, \bar{d}, E)\) satisfies the following condition:

\[\psi \left[\bar{d} \left((f, \varphi)(\bar{x}_\lambda), (f, \varphi)(\bar{y}_\mu) \right) \right] \leq \psi [\tilde{M}(\bar{x}_\lambda, \bar{y}_\mu)] - \varphi[\tilde{M}(\bar{x}_\lambda, \bar{y}_\mu)] \quad \ldots (3.2.1)
\]

For each \(\bar{x}_\lambda, \bar{y}_\mu \in \bar{X}, \bar{x}_\lambda \neq \bar{y}_\mu, \) where \(\psi, \varphi \) are altering distance functions, and
\[M(\tilde{x}_\lambda, \tilde{y}_\mu) = \alpha \left\{ \tilde{d}^2(\tilde{x}_\lambda, (f, \varphi)(\tilde{x}_\lambda)) + \tilde{d}^2(\tilde{y}_\mu, (f, \varphi)(\tilde{y}_\mu)) \right\} \]

\[+ \beta \left\{ \tilde{d}^2(\tilde{x}_\lambda, (f, \varphi)(\tilde{y}_\mu)) + \tilde{d}^2(\tilde{y}_\mu, (f, \varphi)(\tilde{x}_\lambda)) \right\} \]

\[+ \gamma \tilde{d}(\tilde{x}_\lambda, \tilde{y}_\mu) \]

\[+ \delta \tilde{d}(\tilde{x}_\lambda, (f, \varphi)(\tilde{x}_\lambda)) + \tilde{d}(\tilde{y}_\mu, (f, \varphi)(\tilde{y}_\mu)) \]

\[+ \eta \tilde{d}(\tilde{x}_\lambda, (f, \varphi)(\tilde{y}_\mu)) + \tilde{d}(\tilde{y}_\mu, (f, \varphi)(\tilde{x}_\lambda)) \] \quad \ldots (3.2.2)

Where \(\alpha, \beta, \gamma, \delta, \eta > 0 \) and \(2\alpha + 2\beta + \gamma + 2\delta + 2\eta < 1 \) is a soft constant. Then \((f, \varphi)\) has a unique fixed point in \(\tilde{X} \).

Proof: It can be proved easily.

Theorem 3.3: Let \((\tilde{X}, \tilde{d}, E)\) be a soft complete metric space. Suppose the soft mapping \((f, \varphi) : (\tilde{X}, \tilde{d}, E) \to (\tilde{X}, \tilde{d}, E)\) satisfies the following condition:

\[\psi \left[\tilde{d}(f, \varphi)(\tilde{x}_\lambda), (f, \varphi)(\tilde{y}_\mu) \right] \leq \psi[M(\tilde{x}_\lambda, \tilde{y}_\mu)] - \varphi[M(\tilde{x}_\lambda, \tilde{y}_\mu)] \] \quad \ldots (3.3.1)

For each \(\tilde{x}_\lambda, \tilde{y}_\mu \in \tilde{X}, \tilde{x}_\lambda \neq \tilde{y}_\mu \), where \(\psi, \varphi \) are altering distance functions, and

\[\tilde{M}(\tilde{x}_\lambda, \tilde{y}_\mu) = \alpha \left\{ \tilde{d}^2(\tilde{x}_\lambda, (f, \varphi)(\tilde{x}_\lambda)) + \tilde{d}^2(\tilde{y}_\mu, (f, \varphi)(\tilde{y}_\mu)) + \tilde{d}^2(\tilde{y}_\mu, (f, \varphi)(\tilde{x}_\lambda)) \right\} \]

\[+ \beta \left\{ \tilde{d}^2(\tilde{x}_\lambda, (f, \varphi)(\tilde{y}_\mu)) + \tilde{d}^2(\tilde{y}_\mu, (f, \varphi)(\tilde{x}_\lambda)) + \tilde{d}^2(\tilde{x}_\lambda, \tilde{y}_\mu) \right\} \]

\[+ \gamma \tilde{d}(\tilde{x}_\lambda, \tilde{y}_\mu) \]

\[+ \delta \tilde{d}(\tilde{x}_\lambda, (f, \varphi)(\tilde{x}_\lambda)) + \tilde{d}(\tilde{y}_\mu, (f, \varphi)(\tilde{y}_\mu)) \]

\[+ \eta \tilde{d}(\tilde{x}_\lambda, (f, \varphi)(\tilde{y}_\mu)) + \tilde{d}(\tilde{y}_\mu, (f, \varphi)(\tilde{x}_\lambda)) \] \quad \ldots (3.3.2)

Where \(\alpha, \beta > 0 \) and \(2\alpha + 3\beta < 1 \) is a soft constant. Then \((f, \varphi)\) has a unique fixed point in \(\tilde{X} \).

Proof: Let \(\tilde{x}_\lambda^0 \) be any soft point in \(SP(X) \).

Set

\[\tilde{x}_{\lambda_1} = (f, \varphi)(\tilde{x}_\lambda^0) = \left(f(\tilde{x}_\lambda^0) \right)_{\varphi(\lambda)} \]

\[\tilde{x}_{\lambda_2} = (f, \varphi)(\tilde{x}_{\lambda_1}) = \left(f^2(\tilde{x}_\lambda^0) \right)_{\varphi^2(\lambda)} \]

\[\vdots \]

\[\tilde{x}_{\lambda_{n+1}} = (f, \varphi)(\tilde{x}_{\lambda_n}) = \left(f^{n+1}(\tilde{x}_\lambda^0) \right)_{\varphi^{n+1}(\lambda)} \]
Now consider from (3.3.1) we have

\[\widetilde{M}(\bar{x}_{\lambda_{n-1}}, \bar{x}_n) = \alpha \left\{ \frac{\bar{d}^{2}(\bar{x}_{\lambda_{n-1}}, f, \phi)(\bar{x}_{\lambda_{n-1}}) + \bar{d}^{2}(\bar{x}_n, f, \phi)(\bar{x}_n)}{d(\bar{x}_{\lambda_{n-1}}, f, \phi)(\bar{x}_{\lambda_{n-1}}) + \bar{d}(\bar{x}_n, f, \phi)(\bar{x}_n)} \right\} + \beta \left\{ \frac{\bar{d}^{2}(\bar{x}_{\lambda_{n-1}}, f, \phi)(\bar{x}_n) + \bar{d}^{2}(\bar{x}_{\lambda_{n-1}}, f, \phi)(\bar{x}_{\lambda_{n-1}})}{d(\bar{x}_{\lambda_{n-1}}, f, \phi)(\bar{x}_n) + \bar{d}(\bar{x}_{\lambda_{n-1}}, f, \phi)(\bar{x}_{\lambda_{n-1}})} \right\} \]

\[= \alpha \left\{ \frac{\bar{d}^{2}(\bar{x}_{\lambda_{n-1}}, f, \phi)(\bar{x}_{\lambda_{n-1}}) + \bar{d}^{2}(\bar{x}_n, f, \phi)(\bar{x}_n)}{d(\bar{x}_{\lambda_{n-1}}, f, \phi)(\bar{x}_{\lambda_{n-1}}) + \bar{d}(\bar{x}_n, f, \phi)(\bar{x}_n)} \right\} + \beta \left\{ \frac{\bar{d}^{2}(\bar{x}_{\lambda_{n-1}}, f, \phi)(\bar{x}_n) + \bar{d}^{2}(\bar{x}_{\lambda_{n-1}}, f, \phi)(\bar{x}_{\lambda_{n-1}})}{d(\bar{x}_{\lambda_{n-1}}, f, \phi)(\bar{x}_n) + \bar{d}(\bar{x}_{\lambda_{n-1}}, f, \phi)(\bar{x}_{\lambda_{n-1}})} \right\} \]

\[\leq \alpha \left\{ \frac{(\bar{d}(\bar{x}_{\lambda_{n-1}}, f, \phi)(\bar{x}_{\lambda_{n-1}}) + \bar{d}(\bar{x}_n, f, \phi)(\bar{x}_n))^{2}}{d(\bar{x}_{\lambda_{n-1}}, f, \phi)(\bar{x}_{\lambda_{n-1}}) + \bar{d}(\bar{x}_n, f, \phi)(\bar{x}_n)} \right\} + \beta \left\{ \frac{(\bar{d}(\bar{x}_{\lambda_{n-1}}, f, \phi)(\bar{x}_n) + \bar{d}(\bar{x}_{\lambda_{n-1}}, f, \phi)(\bar{x}_{\lambda_{n-1}}))^{2}}{d(\bar{x}_{\lambda_{n-1}}, f, \phi)(\bar{x}_n) + \bar{d}(\bar{x}_{\lambda_{n-1}}, f, \phi)(\bar{x}_{\lambda_{n-1}})} \right\} \]

\[\leq \alpha \{d(\bar{x}_{\lambda_{n-1}}, \bar{x}_n) + d(\bar{x}_n, \bar{x}_{\lambda_{n+1}})\} + \beta \{d(\bar{x}_{\lambda_{n-1}}, \bar{x}_{\lambda_{n+1}}) + d(\bar{x}_n, \bar{x}_{\lambda_n})\} \]

\[\leq (\alpha + 2\beta)\{d(\bar{x}_{\lambda_{n-1}}, \bar{x}_n)\} + (\alpha + \beta)\{d(\bar{x}_n, \bar{x}_{\lambda_{n+1}})\} \]

From (3.3.1), we have

\[\psi(\bar{d}(\bar{x}_{\lambda_{n-1}}, \bar{x}_{\lambda_{n+1}})) = \psi\left[d\left((f, \phi)(\bar{x}_{\lambda_{n-1}}), (f, \phi)(\bar{x}_n)\right)\right] \]

\[\leq \psi\left[\widetilde{M}(\bar{x}_{\lambda_{n-1}}, \bar{x}_n) - \phi\left[\widetilde{M}(\bar{x}_{\lambda_{n-1}}, \bar{x}_n)\right]\right] \]

\[\leq \psi(\alpha + 2\beta)\{d(\bar{x}_{\lambda_{n-1}}, \bar{x}_n)\} + (\alpha + \beta)\{d(\bar{x}_n, \bar{x}_{\lambda_{n+1}})\} - \phi\left[\widetilde{M}(\bar{x}_{\lambda_{n-1}}, \bar{x}_n)\right] \]

\[\psi(\bar{d}(\bar{x}_{\lambda_{n-1}}, \bar{x}_{\lambda_{n+1}})) \leq \psi(\alpha + 2\beta)\{d(\bar{x}_{\lambda_{n-1}}, \bar{x}_n)\} + (\alpha + \beta)\{d(\bar{x}_n, \bar{x}_{\lambda_{n+1}})\} \]

Since \(\psi\) is non-decreasing, we have

\[\bar{d}(\bar{x}_{\lambda_{n-1}}, \bar{x}_{\lambda_{n+1}}) \leq (\alpha + 2\beta)\{d(\bar{x}_{\lambda_{n-1}}, \bar{x}_n)\} + (\alpha + \beta)\{d(\bar{x}_n, \bar{x}_{\lambda_{n+1}})\} \]

\[\bar{d}(\bar{x}_{\lambda_{n-1}}, \bar{x}_{\lambda_{n+1}}) \leq \frac{(\alpha+2\beta)(\alpha-\beta)}{ \bar{d}(\bar{x}_{\lambda_{n-1}}, \bar{x}_n) \bar{d}(\bar{x}_n, \bar{x}_{\lambda_{n+1}}) } \]
\[d(\tilde{x}^n_{\lambda_n}, \tilde{x}^{n+1}_{\lambda_{n+1}}) \leq h \cdot d(\tilde{x}^{n-1}_{\lambda_{n-1}}, \tilde{x}^n_{\lambda_n}) \]

Where \(h = \frac{(a+2\beta)}{1-\alpha-\beta} \)

Thus \(d(\tilde{x}^n_{\lambda_n}, \tilde{x}^{n+1}_{\lambda_{n+1}}) \leq h^n d(\tilde{x}^0_{\lambda_0}, \tilde{x}^1_{\lambda_1}) \)

Taking \(n \to \infty \), we have

\[\lim_{n \to \infty} d(\tilde{x}^n_{\lambda_n}, \tilde{x}^{n+1}_{\lambda_{n+1}}) = 0 \] \(\ldots(3.3.3) \)

Now, we will show that \(\{\tilde{x}^n_{\lambda_n}\} \) is a soft Cauchy sequence. Suppose that \(\{\tilde{x}^n_{\lambda_n}\} \) is not a Soft Cauchy sequence, which means that there is a constant \(\varepsilon_0 > 0 \) such that for each positive integer \(k \), there are positive integer \(\lambda_{m(k)} \) and \(\lambda_{n(k)} \) with \(\lambda_{m(k)} > \lambda_{n(k)} > k \) such that

\[d\left(\tilde{x}^{m(k)}_{\lambda_{m(k)}}, \tilde{x}^{n(k)}_{\lambda_{n(k)}}\right) \geq \varepsilon_0, d\left(\tilde{x}^{m(k)-1}_{\lambda_{m(k)-1}} , \tilde{x}^{n(k)}_{\lambda_{n(k)}}\right) < \varepsilon_0 \]

By triangle inequality

\[\varepsilon_0 \leq d\left(\tilde{x}^{m(k)}_{\lambda_{m(k)}}, \tilde{x}^{n(k)}_{\lambda_{n(k)}}\right) \leq d\left(\tilde{x}^{m(k)}_{\lambda_{m(k)}}, \tilde{x}^{m(k)-1}_{\lambda_{m(k)-1}}\right) + d\left(\tilde{x}^{m(k)-1}_{\lambda_{m(k)-1}}, \tilde{x}^{n(k)}_{\lambda_{n(k)}}\right) \]

\[< d\left(\tilde{x}^{m(k)}_{\lambda_{m(k)}}, \tilde{x}^{m(k)-1}_{\lambda_{m(k)-1}}\right) + \varepsilon_0 \]

Letting \(k \to \infty \) and using \((3.3.3) \), we have

\[\lim_{n \to \infty} d\left(\tilde{x}^{m(k)}_{\lambda_{m(k)}}, \tilde{x}^{n(k)}_{\lambda_{n(k)}}\right) = \varepsilon_0 \] \(\ldots(3.3.4) \)

Similarly, we have

\[\begin{align*}
\lim_{n \to \infty} \tilde{d}\left(\tilde{x}^{m(k)}_{\lambda_{m(k)}}, \tilde{x}^{n(k)+1}_{\lambda_{n(k)+1}}\right) &= \varepsilon_0, \\
\lim_{n \to \infty} \tilde{d}\left(\tilde{x}^{m(k)}_{\lambda_{m(k)}}, \tilde{x}^{n(k)}_{\lambda_{n(k)}}\right) &= \varepsilon_0, \\
\lim_{n \to \infty} \tilde{d}\left(\tilde{x}^{m(k)+1}_{\lambda_{m(k)+1}}, \tilde{x}^{n(k)+1}_{\lambda_{n(k)+1}}\right) &= \varepsilon_0.
\end{align*} \] \(\ldots(3.3.5) \)

Putting \(\tilde{x}_\lambda = \tilde{x}^{m(k)}_{\lambda_{m(k)}} \) and \(\tilde{y}_\mu = \tilde{x}^{n(k)}_{\lambda_{n(k)}} \) in \((3.3.2) \) we have

\[\tilde{N}\left(\tilde{x}^{m(k)}_{\lambda_{m(k)}}, \tilde{x}^{n(k)}_{\lambda_{n(k)}}\right) = \alpha \left\{ \begin{array}{c}
\tilde{d}\left(\tilde{x}^{m(k)}_{\lambda_{m(k)}}, \tilde{x}^{m(k)}_{\lambda_{m(k)}}\right) + \tilde{d}\left(\tilde{x}^{n(k)}_{\lambda_{n(k)}}, \tilde{x}^{n(k)}_{\lambda_{n(k)}}\right) + \tilde{d}\left(\tilde{y}_\mu, \tilde{x}^{m(k)}_{\lambda_{m(k)}}\right) \\
\tilde{d}\left(\tilde{x}^{m(k)}_{\lambda_{m(k)}}, \tilde{x}^{m(k)}_{\lambda_{m(k)}}\right) + \tilde{d}\left(\tilde{x}^{n(k)}_{\lambda_{n(k)}}, \tilde{x}^{n(k)}_{\lambda_{n(k)}}\right) + \tilde{d}\left(\tilde{y}_\mu, \tilde{x}^{m(k)}_{\lambda_{m(k)}}\right)
\end{array} \right\} \]
Letting and using (3.3.3) and (3.3.5), we have
\[
\lim_{k \to \infty} \mathcal{M} \left(\tilde{x}_{\lambda(m)}^{m(k)}, \tilde{x}_{\lambda(n)}^{n(k)} \right) = (\alpha + \beta) \epsilon_0 \tag{3.3.6}
\]
From (3.3.1) we have
\[
\psi \left[\tilde{d} \left(\tilde{x}_{\lambda(m(k)+1)}^{m(k)+1}, \tilde{x}_{\lambda(n(k)+1)}^{n(k)+1} \right) \right] = \psi \left[\tilde{d} \left((f, \varphi) \left(\tilde{x}_{\lambda(m(k))}^{m(k)}, (f, \varphi) \left(\tilde{x}_{\lambda(n(k))}^{n(k)} \right) \right) \right]
\leq \psi \left[\mathcal{M} \left(\tilde{x}_{\lambda(m(k))}^{m(k)}, \tilde{x}_{\lambda(n(k))}^{n(k)} \right) \right] - \varphi \left[\mathcal{M} \left(\tilde{x}_{\lambda(m(k))}^{m(k)}, \tilde{x}_{\lambda(n(k))}^{n(k)} \right) \right]
\]
Taking \(k \to \infty \) and from (3.3.5), (3.3.6), we have
\[
\psi[\epsilon_0] \leq \psi[(\alpha + \beta) \epsilon_0] - \varphi[(\alpha + \beta) \epsilon_0]
\leq \psi[\epsilon_0] - \varphi[(\alpha + \beta) \epsilon_0]
\]
This leads to \(\varphi[(\alpha + \beta) \epsilon_0] = 0 \), and property of \(\varphi \) we get \(\epsilon_0 = 0 \).

This is a contradiction. Thus \(\{\tilde{x}_{\lambda(n)}^{n}\} \) is a soft Cauchy sequence, which is complete. Thus, there is \(\tilde{x}_\lambda^* \in \tilde{X} \) such that \(\tilde{x}_{\lambda(n)}^{n} \to \tilde{x}_\lambda^* \), \(n \to \infty \). \(\tag{3.3.7} \)

Putting \(\tilde{x}_\lambda = \tilde{x}_{\lambda(n)}^{n} \) and \(\tilde{y}_\mu = \tilde{x}_\lambda^* \) in (3.3.2) we have
\[
\mathcal{M} \left(\tilde{x}_{\lambda(n)}, \tilde{x}_\lambda^* \right) = \alpha \left[\frac{d^2 (f, \varphi) (\tilde{x}_{\lambda(n)}^{n})}{d (\tilde{x}_{\lambda(n)}^{n}, (f, \varphi) (\tilde{x}_{\lambda(n)}^{n}))} + \frac{d^2 (f, \varphi) (\tilde{x}_{\lambda(n)}^{n})}{d (\tilde{x}_{\lambda(n)}^{n}, (f, \varphi) (\tilde{x}_{\lambda(n)}^{n}))} + \frac{d^2 (f, \varphi) (\tilde{x}_{\lambda(n)}^{n})}{d (\tilde{x}_{\lambda(n)}^{n}, (f, \varphi) (\tilde{x}_{\lambda(n)}^{n}))} + \frac{d^2 (f, \varphi) (\tilde{x}_{\lambda(n)}^{n})}{d (\tilde{x}_{\lambda(n)}^{n}, (f, \varphi) (\tilde{x}_{\lambda(n)}^{n}))} \right]
\]
\[
+ \beta \left\{ \frac{d^2 (f, \varphi) (\tilde{x}_\lambda^*)}{d (\tilde{x}_{\lambda(n)}^{n}, (f, \varphi) (\tilde{x}_{\lambda(n)}^{n}))} + \frac{d^2 (f, \varphi) (\tilde{x}_\lambda^*)}{d (\tilde{x}_{\lambda(n)}^{n}, (f, \varphi) (\tilde{x}_{\lambda(n)}^{n}))} + \frac{d^2 (f, \varphi) (\tilde{x}_\lambda^*)}{d (\tilde{x}_{\lambda(n)}^{n}, (f, \varphi) (\tilde{x}_{\lambda(n)}^{n}))} + \frac{d^2 (f, \varphi) (\tilde{x}_\lambda^*)}{d (\tilde{x}_{\lambda(n)}^{n}, (f, \varphi) (\tilde{x}_{\lambda(n)}^{n}))} \right\}
\]
Taking $n \to \infty$ and using (3.3.3), (3.3.7) we have

$$\lim_{n \to \infty} \tilde{M}(\tilde{x}_{\lambda_n}^n, \tilde{x}_{\lambda}^*) = (\alpha + \beta)\{\tilde{d}(\tilde{x}_{\lambda}^*, (f, \varphi)(\tilde{x}_{\lambda}^*))\}$$

From (3.3.1) we have

$$\psi[\tilde{d}(\tilde{x}_{\lambda_n}^{n+1}, (f, \varphi)(\tilde{x}_{\lambda}^*))] = \psi[\tilde{d}(\tilde{x}_{\lambda_n}^n, (f, \varphi)(\tilde{x}_{\lambda}^*))]$$

$$\leq \psi[\tilde{M}(\tilde{x}_{\lambda_n}^n, \tilde{x}_{\lambda}^*)] - \varphi[\tilde{d}(\tilde{x}_{\lambda_n}^n, \tilde{x}_{\lambda}^*)]$$

$$\psi[\tilde{d}(\tilde{x}_{\lambda}^*, (f, \varphi)(\tilde{x}_{\lambda}^*))] \leq \psi[(\alpha + \beta)\{\tilde{d}(\tilde{x}_{\lambda}^*, (f, \varphi)(\tilde{x}_{\lambda}^*))\}] - \varphi[(\alpha + \beta)\{\tilde{d}(\tilde{x}_{\lambda}^*, (f, \varphi)(\tilde{x}_{\lambda}^*))\}]$$

$$\psi[\tilde{d}(\tilde{x}_{\lambda}^*, (f, \varphi)(\tilde{x}_{\lambda}^*))] \leq \psi[\tilde{d}(\tilde{x}_{\lambda}^*, (f, \varphi)(\tilde{x}_{\lambda}^*))] - \varphi[(\alpha + \beta)\{\tilde{d}(\tilde{x}_{\lambda}^*, (f, \varphi)(\tilde{x}_{\lambda}^*))\}]$$

Which implies $\varphi[(\alpha + \beta)\{\tilde{d}(\tilde{x}_{\lambda}^*, (f, \varphi)(\tilde{x}_{\lambda}^*))\}] = 0$,

So $\tilde{d}(\tilde{x}_{\lambda}^*, (f, \varphi)(\tilde{x}_{\lambda}^*)) = 0$, that is $(f, \varphi)(\tilde{x}_{\lambda}^*) = \tilde{x}_{\lambda}^*$.

Uniqueness: Let \tilde{y}_{μ}^* is another fixed point of (f, φ) in \tilde{X} such that $\tilde{x}_{\lambda}^* \neq \tilde{y}_{\mu}^*$, then we have

Putting $\tilde{x}_{\lambda} = \tilde{x}_{\lambda}^*$ and $\tilde{y}_{\mu} = \tilde{y}_{\mu}^*$ in (3.3.2) we have

$$\tilde{M}(\tilde{x}_{\lambda}^*, \tilde{y}_{\mu}^*) = \alpha \left\{ \frac{\tilde{d}^2(\tilde{x}_{\lambda}^*, (f, \varphi)(\tilde{x}_{\lambda}^*)) + \tilde{d}^2(\tilde{y}_{\mu}^*, (f, \varphi)(\tilde{y}_{\mu}^*)) + \tilde{d}^2(\tilde{y}_{\mu}^*, (f, \varphi)(\tilde{x}_{\lambda}^*))}{\tilde{d}(\tilde{x}_{\lambda}^*, (f, \varphi)(\tilde{x}_{\lambda}^*)) + \tilde{d}(\tilde{y}_{\mu}^*, (f, \varphi)(\tilde{y}_{\mu}^*)) + \tilde{d}(\tilde{y}_{\mu}^*, (f, \varphi)(\tilde{x}_{\lambda}^*))} \right\}$$

$$+ \beta \left\{ \frac{\tilde{d}^2(\tilde{x}_{\lambda}^*, (f, \varphi)(\tilde{x}_{\lambda}^*)) + \tilde{d}^2(\tilde{y}_{\mu}^*, (f, \varphi)(\tilde{y}_{\mu}^*)) + \tilde{d}^2(\tilde{y}_{\mu}^*, \tilde{y}_{\mu}^*)}{\tilde{d}(\tilde{x}_{\lambda}^*, (f, \varphi)(\tilde{x}_{\lambda}^*)) + \tilde{d}(\tilde{y}_{\mu}^*, (f, \varphi)(\tilde{y}_{\mu}^*)) + \tilde{d}(\tilde{y}_{\mu}^*, \tilde{y}_{\mu}^*)} \right\}$$

$$\tilde{M}(\tilde{x}_{\lambda}^*, \tilde{y}_{\mu}^*) = (\alpha + \beta)\{\tilde{d}(\tilde{x}_{\lambda}^*, \tilde{y}_{\mu}^*)\}$$

From (3.3.1) we have

$$\psi[\tilde{d}(\tilde{x}_{\lambda}^*, \tilde{y}_{\mu}^*)] = \psi[\tilde{d}(\tilde{x}_{\lambda}^*, (f, \varphi)(\tilde{x}_{\lambda}^*))]$$

$$\leq \psi[\tilde{M}(\tilde{x}_{\lambda}^*, \tilde{y}_{\mu}^*)] - \varphi[\tilde{M}(\tilde{x}_{\lambda}^*, \tilde{y}_{\mu}^*)]$$

$$\leq \psi[(\alpha + \beta)\tilde{d}(\tilde{x}_{\lambda}^*, \tilde{y}_{\mu}^*)] - \varphi[(\alpha + \beta)\tilde{d}(\tilde{x}_{\lambda}^*, \tilde{y}_{\mu}^*)]$$

$$\psi[\tilde{d}(\tilde{x}_{\lambda}^*, \tilde{y}_{\mu}^*)] \leq \psi[\tilde{d}(\tilde{x}_{\lambda}^*, \tilde{y}_{\mu}^*)] - \varphi[(\alpha + \beta)\tilde{d}(\tilde{x}_{\lambda}^*, \tilde{y}_{\mu}^*)]$$

So $\varphi[(\alpha + \beta)\tilde{d}(\tilde{x}_{\lambda}^*, \tilde{y}_{\mu}^*)] = 0$, thus $\tilde{d}(\tilde{x}_{\lambda}^*, \tilde{y}_{\mu}^*) = 0$, that is $\tilde{x}_{\lambda}^* = \tilde{y}_{\mu}^*$.
Hence fixed point of \((f, \varphi)\) is unique.

References